• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule o valor de m na equação matricial A*X=B

Calcule o valor de m na equação matricial A*X=B

Mensagempor andersontricordiano » Seg Jan 16, 2012 19:46

Para que valores reais de m a equação matricial A * X = B em que , A=\begin{pmatrix}
   2 & 1& -1  \\ 
   0 & 1& 1 \\ 
   -4&0&m \end{pmatrix} , X=\begin{pmatrix}
   {x}_{1}   \\ 
   {x}_{2} \\
{x}_{3} 
\end{pmatrix} e B=\begin{pmatrix}
   0   \\ 
   0 \\
0 
\end{pmatrix} admite uma única solução \begin{vmatrix}
   {x}_{1} & {x}_{2} &{x}_{3} \\ 
    
\end{vmatrix}?
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule o valor de m na equação matricial A*X=B

Mensagempor Arkanus Darondra » Seg Jan 16, 2012 20:37

Olá andersontricordiano.
Você tem a resposta do gabarito? Encontrei x \not= 4 mas não tenho certeza.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Calcule o valor de m na equação matricial A*X=B

Mensagempor andersontricordiano » Qua Jan 18, 2012 16:01

sim a resposta é X diferente de 4
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule o valor de m na equação matricial A*X=B

Mensagempor Arkanus Darondra » Qua Jan 18, 2012 23:52

andersontricordiano escreveu:Para que valores reais de m a equação matricial A * X = B em que , A=\begin{pmatrix}
   2 & 1& -1  \\ 
   0 & 1& 1 \\ 
   -4&0&m \end{pmatrix} , X=\begin{pmatrix}
   {x}_{1}   \\ 
   {x}_{2} \\
{x}_{3} 
\end{pmatrix} e B=\begin{pmatrix}
   0   \\ 
   0 \\
0 
\end{pmatrix} admite uma única solução \begin{vmatrix}
   {x}_{1} & {x}_{2} &{x}_{3} \\ 
    
\end{vmatrix}?


A.X=B \Rightarrow \begin{pmatrix} 2 & 1& -1  \\ 0 & 1& 1 \\ -4&0&m \end{pmatrix}.\begin{pmatrix}{x}_{1} \\ {x}_{2} \\ {x}_{3}\end{pmatrix} = \begin{pmatrix}0   \\  0 \\ 0 \end{pmatrix}\Rightarrow \begin{pmatrix}2x_1 + x_2 - x_3 \\ 0x_1 + x_2 + x_3 \\ -4x_1 + 0x_2 + mx_3\end{pmatrix} = \begin{pmatrix}0   \\  0 \\ 0 \end{pmatrix} \Rightarrow $ \left\{\begin{array}{lll}\displaystyle }2x_1 + x_2 - x_3 = 0 (2L1 + L3) \\\displaystyle 0x_1 + x_2 + x_3 = 0 \\\displaystyle  -4x_1 + 0x_2 + mx_3 = 0\end{array}\right \Rightarrow $ \left\{\begin{array}{lll}\displaystyle }2x_1 + x_2 - x_3 = 0 \\\displaystyle 0x_1 + x_2 + x_3 = 0 (-2L2 + L3) \\\displaystyle  0x_1 + 2x_2 + -2x_3 + mx_3 = 0\end{array}\right \Rightarrow
$ \left\{\begin{array}{lll}\displaystyle }2x_1 + x_2 - x_3 = 0 \\\displaystyle 0x_1 + x_2 + x_3 = 0  \\\displaystyle  0x_1 + 0x_2 + -4x_3 + mx_3 = 0\end{array}\right
Para o sistema possuir uma única solução, ele deve ser um SPD, portanto, a última linha não pode ser nula.
0x_1 + 0x_2 + -4x_3 + mx_3 \not= 0 \Rightarrow x_3(-4 + m) \not= 0\Rightarrow x_3 \not= 0 e -4 + m \not= 0
Como ele só pode os valor de m \Rightarrow m \not= 4
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.