Estou com duvida para resolver este exercício se alguem poder me ajudar eu agradeço
Considere uma PG constituída de números positivos {a1, a2...}, e a partir daí consideremos uma nova sequência dos respectivos logaritmos dos elementos da progressão geométrica dada, tomados em uma base b, tal que 0 < b ? 1.
Mostre que essa nova sequência é uma PA.

colocando os dois lados no logaritmo de base b ficamos:
= n-1
= (n-1) x + y = t. lembrando que toda equaçao do primeiro grau é uma P.A. temos : (n-1) x + y
az + b = r.
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)