• Anúncio Global
    Respostas
    Exibições
    Última mensagem

4/088

4/088

Mensagempor Colton » Dom Jul 25, 2010 17:39

+
+

"Quais as progressões aritméticas nas quais a soma de dois termos quaisquer faz parte da progressão?"

Se eu tomar dois termos quaisquer: [ap = a1+(p-1)*r] + [aq = a1+(q-1)*r] chego a ap+aq = 2a1+(p+q-1-1)*r mas aí eu "empaco"...a resposta do livro é a1 = k*r, k Inteiro, isto é o primeiro termo da progressão tem que ser múltiplo da razão o que é claro, pois aí qualquer termo será múltiplo de r, assim como a soma de quaisquer termos...só eu não vislumbro os passos de ap+aq = 2a1+(p+q-1-1)*r até a1 = k*r, k Inteiro.
Agradeço uma orientação.

Gratos

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: 4/088

Mensagempor alexandre32100 » Qui Set 23, 2010 21:29

Bom começo.
Vou usar este mesmo caminho.
a_n=a_1+(n-1)\cdot r \rightarrow \text{ termo geral}
Dois termos aleatórios: a_p e a_q.
a_p+a_q=2a_1+(p+q-2)\cdot r
Compare a soma que você obteve com o termo geral.
Veja que na "fórumla" da soma de dois termos quaisquer temos 2a_1 e na do termo geral, apenas a_1, assim, a_1 tem de ser divisível por r para que a soma dos dois seja um termo da PA, algo do tipoa_p+a_q=a_1+(p+q+k-2)r onde k\cdot r=a_1 e é claro k\in \mathbb{Z} (usei k para ficar igual à solução do teu livro), afinal não existe o termo a_{0,5} numa progressão.
Não sei se consegui ser claro nessa explicação, mas é essa a ideia. Não creio que haja um forma 100\% algébrica para isso. :-D
alexandre32100
 

Re: 4/088

Mensagempor Colton » Sex Set 24, 2010 07:49

+
+
Gratos, Alexandre.
Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.