• Anúncio Global
    Respostas
    Exibições
    Última mensagem

4/088

4/088

Mensagempor Colton » Dom Jul 25, 2010 17:39

+
+

"Quais as progressões aritméticas nas quais a soma de dois termos quaisquer faz parte da progressão?"

Se eu tomar dois termos quaisquer: [ap = a1+(p-1)*r] + [aq = a1+(q-1)*r] chego a ap+aq = 2a1+(p+q-1-1)*r mas aí eu "empaco"...a resposta do livro é a1 = k*r, k Inteiro, isto é o primeiro termo da progressão tem que ser múltiplo da razão o que é claro, pois aí qualquer termo será múltiplo de r, assim como a soma de quaisquer termos...só eu não vislumbro os passos de ap+aq = 2a1+(p+q-1-1)*r até a1 = k*r, k Inteiro.
Agradeço uma orientação.

Gratos

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: 4/088

Mensagempor alexandre32100 » Qui Set 23, 2010 21:29

Bom começo.
Vou usar este mesmo caminho.
a_n=a_1+(n-1)\cdot r \rightarrow \text{ termo geral}
Dois termos aleatórios: a_p e a_q.
a_p+a_q=2a_1+(p+q-2)\cdot r
Compare a soma que você obteve com o termo geral.
Veja que na "fórumla" da soma de dois termos quaisquer temos 2a_1 e na do termo geral, apenas a_1, assim, a_1 tem de ser divisível por r para que a soma dos dois seja um termo da PA, algo do tipoa_p+a_q=a_1+(p+q+k-2)r onde k\cdot r=a_1 e é claro k\in \mathbb{Z} (usei k para ficar igual à solução do teu livro), afinal não existe o termo a_{0,5} numa progressão.
Não sei se consegui ser claro nessa explicação, mas é essa a ideia. Não creio que haja um forma 100\% algébrica para isso. :-D
alexandre32100
 

Re: 4/088

Mensagempor Colton » Sex Set 24, 2010 07:49

+
+
Gratos, Alexandre.
Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.