• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressao aritmetica

Progressao aritmetica

Mensagempor yanagranhen » Seg Jun 21, 2010 23:11

(PUC) Quantos numeros inteiros compreendidos entre 1 e 1200 (inclusive) nao sao multiplos de 2 e nem de 3?
a)400
b)600
c)800
d)1000
e)200

Nessa questao tentei fazer por exclusao, tipo achei quanto valores serao multiplos de 3, depois de 2 , diminui pra tirar os repetidos como se fosse a intersecçao! Mas deu 200 e nao o gabarito que é 400! :(
Me ajudem!
yanagranhen
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jun 17, 2010 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia florestal
Andamento: cursando

Re: Progressao aritmetica

Mensagempor MarceloFantini » Ter Jun 22, 2010 00:53

Tente fazer usando múltiplos de 6.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressao aritmetica

Mensagempor yanagranhen » Qua Jun 23, 2010 22:44

Eu já tentei! Achei os multiplos de 6, fiz o a1= 6 e o ultimo termo 1200. Quando joguei na formula da soma deu 200!
Daí como a questão pede os NÃO multiplos de 2 nem de 3, diminui 200 de 1200 e deu como resposta 1000! Sendo que o gabarito diz que a resposta é 400! E agora? :-O
yanagranhen
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jun 17, 2010 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia florestal
Andamento: cursando

Re: Progressao aritmetica

Mensagempor Douglasm » Qui Jun 24, 2010 09:46

Esse é um exemplo do "princípio da inclusão-exclusão". Se você exclui o múltiplos de 2 e depois os múltiplos de 3, você acabou subtraindo 2 vezes os múltiplos de 6. Deste modo, para obter o resultado correto você deve somá-los:

Múltiplos de 2: \frac{[1200]}{2} = 600

Múltiplos de 3: \frac{[1200]}{3} = 400

Múltiplos de 2 e 3 (6) = \frac{[1200]}{6} = 200

Deste modo:

1200 - 600 - 400 + 200 = 400

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}