• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômio Mônico

Polinômio Mônico

Mensagempor Cleyson007 » Sex Jan 22, 2010 18:35

Boa tarde!

Estou bastante confuso com a resolução da questão abaixo. Alguém pode me ajudar?

Determine, usando as propriedades da divisão:

O polinômio mônico f(x) de grau 5, tal que f(-2)=f(-1)=f(0)=f(1)=f(2)=0

Agradeço sua ajuda.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1030
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Polinômio Mônico

Mensagempor Elcioschin » Sex Jan 22, 2010 23:08

Polinômio mônico é aquele em que o coeficiente do termo de maior grau vale 1:

F(x) = x^5 + ax^4 + bx³ + cx² + dx + e

Para x = 0 ----> F(0) = e ----> 0 = e -----> e = 0

Para x = 1 -----> F(1) = 1 + a + b + c + d ------> a + b + c + d + 1 = 0
Para x = -1 ----> F(-1) = - 1 + a - b + c - d ----> a - b + c - d - 1 = 0

Somando ambas as equações ----> 2a + 2c = 0 ----> c = - a

Para x = 2 -----> F(2) = 32 + 16a + 8b + 4c + 2d ------> 8a + 4b + 2c + d + 16 = 0
Para x = -2 ----> F(-2) = - 32 + 16a - 8b + 4c - 2d ----> 8a - 4b + 2c - d - 16 = 0

Somando ambas ----> 16a + 4c = 0 -----> c = - 4a

Só é possivel para a = 0 e c = 0

Não dá para calcular b, d ---> Só temos ----> b + d = - 1


F(x) = x^5 + bx³ + dx com b + d + 1 = 0 ----> Só conseguí chegar até aqui.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Polinômio Mônico

Mensagempor MarceloFantini » Sáb Jan 23, 2010 21:59

Boa noite.

Mesmo que b e d sejam desconhecidos, a função ainda é:

f(x) = x^{5} + bx^{3} + dx

Certo? Ainda não valem as relações f(1)=0 e f(2)=0? Porque substituindo e resolvendo, encontrei b=-5 e d=4.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em matemática pura
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}