• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômio Mônico

Polinômio Mônico

Mensagempor Cleyson007 » Sex Jan 22, 2010 18:35

Boa tarde!

Estou bastante confuso com a resolução da questão abaixo. Alguém pode me ajudar?

Determine, usando as propriedades da divisão:

O polinômio mônico f(x) de grau 5, tal que f(-2)=f(-1)=f(0)=f(1)=f(2)=0

Agradeço sua ajuda.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1024
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Polinômio Mônico

Mensagempor Elcioschin » Sex Jan 22, 2010 23:08

Polinômio mônico é aquele em que o coeficiente do termo de maior grau vale 1:

F(x) = x^5 + ax^4 + bx³ + cx² + dx + e

Para x = 0 ----> F(0) = e ----> 0 = e -----> e = 0

Para x = 1 -----> F(1) = 1 + a + b + c + d ------> a + b + c + d + 1 = 0
Para x = -1 ----> F(-1) = - 1 + a - b + c - d ----> a - b + c - d - 1 = 0

Somando ambas as equações ----> 2a + 2c = 0 ----> c = - a

Para x = 2 -----> F(2) = 32 + 16a + 8b + 4c + 2d ------> 8a + 4b + 2c + d + 16 = 0
Para x = -2 ----> F(-2) = - 32 + 16a - 8b + 4c - 2d ----> 8a - 4b + 2c - d - 16 = 0

Somando ambas ----> 16a + 4c = 0 -----> c = - 4a

Só é possivel para a = 0 e c = 0

Não dá para calcular b, d ---> Só temos ----> b + d = - 1


F(x) = x^5 + bx³ + dx com b + d + 1 = 0 ----> Só conseguí chegar até aqui.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Polinômio Mônico

Mensagempor MarceloFantini » Sáb Jan 23, 2010 21:59

Boa noite.

Mesmo que b e d sejam desconhecidos, a função ainda é:

f(x) = x^{5} + bx^{3} + dx

Certo? Ainda não valem as relações f(1)=0 e f(2)=0? Porque substituindo e resolvendo, encontrei b=-5 e d=4.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em matemática pura
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59