por kellykcl » Qui Fev 27, 2014 23:20
Boa noite amigos do fórum!
Preciso de ajuda para entender (como se resolve) a seguinte questão de PG!
(U.F.PE) Seja
um quadrado de lado medindo
unidades de comprimento. Unindo-se os pontos médios dos lados de
, formamos um novo quadrado
de lado medindo
unidades de comprimento. Assim procedendo indefinidamente, obtemos a sequência de quadrados
, onde
são, respectivamente, as medidas das áreas destes quadrados. Assinale a alternativa que corresponde à soma 
a)

unidades de comprimento
b)

unidades de comprimento
c)

unidades de comprimento
d) (

)² unidades de comprimento
e)

unidades de comprimento
***Gabarito: aObrigada a todos!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
-
kellykcl
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Fev 15, 2013 16:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: formado
por Russman » Sex Fev 28, 2014 15:09
Perceba, primeiramente, que a medida do lado do quadrado obtido posteriormente a união do pontos médios deverá ser metade da medida do lado do quadrado original. Assim, adotando a variável

para contar os sucessivos quadrados obtidos sendo

o primeiro, temos a seguinte relação de recorrência:

Essa equação tem como solução

.
Agora, a área

do

-ésimo quadrado é dada pelo quadrado da medida de seu lado.
Portanto,

ou, ainda,

.
A soma de todas as áreas será

O último somatório obtido é a soma de uma P.G. de razão e primeiro termo

. É conhecido que

se

.
Tomando

, então

. Daí,

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Progressão geométrica] Soma dos n primeiros termos
por fff » Ter Jan 07, 2014 13:30
- 3 Respostas
- 5276 Exibições
- Última mensagem por fff

Ter Jan 07, 2014 17:47
Sequências
-
- Soma de uma PG infinita
por silvia fillet » Qua Fev 15, 2012 19:53
- 12 Respostas
- 9023 Exibições
- Última mensagem por Rosana Vieira

Qua Fev 22, 2012 17:44
Progressões
-
- [Progressao] série geometrica X progressao geometrica?
por aajunim » Seg Mar 18, 2013 11:19
- 2 Respostas
- 4242 Exibições
- Última mensagem por aajunim

Ter Mar 19, 2013 11:44
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4720 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- Progressão geométrica (ITA)
por Ananda » Sex Mar 07, 2008 13:27
- 17 Respostas
- 25517 Exibições
- Última mensagem por Ananda

Qui Mar 13, 2008 11:10
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.