por jose henrique » Sáb Out 09, 2010 17:45
O limite da soma dos termos da pg
![(\frac{1}{\sqrt[]{2}}, \frac{1}{2}, \frac{\sqrt[]{2}}{4},....) (\frac{1}{\sqrt[]{2}}, \frac{1}{2}, \frac{\sqrt[]{2}}{4},....)](/latexrender/pictures/bdf86c45dda6bb275b0b76f492bc5a11.png)
.
o meu resultado deu
![\frac{\frac{1}{2}}{\frac{1}{\sqrt[]{2}}} = \frac{\sqrt[]{2}}{2} \frac{\frac{1}{2}}{\frac{1}{\sqrt[]{2}}} = \frac{\sqrt[]{2}}{2}](/latexrender/pictures/08967f981983f91095f32080f0c5c95d.png)
então q=
![\frac{\sqrt[]{2}}{2} \frac{\sqrt[]{2}}{2}](/latexrender/pictures/3e7a67a6d458831b40b1454b389ed266.png)
S =

![\frac{{a}_{1}}{1-q} = \frac{\frac{1}{\sqrt[]{2}}}{1-\frac{\sqrt[]{2}}{2}} = \frac{\frac{1}{\sqrt[]{2}}}{\frac{2}{2}-\frac{\sqrt[]{2}}{2}} =
\frac{\frac{1}{\sqrt[]{2}}}{\frac{2-\sqrt[]{2}}{2}} = \frac{2}{2\sqrt[]{2}-2}=\frac{1}{\sqrt[]{2}-2}= \frac{1}{\sqrt[]{2}-2}X\frac{\sqrt[]{2}+2}{\sqrt[]{2}+2}=\frac{\sqrt[]{2}+2}{-2}= \sqrt[]{2}-1 \frac{{a}_{1}}{1-q} = \frac{\frac{1}{\sqrt[]{2}}}{1-\frac{\sqrt[]{2}}{2}} = \frac{\frac{1}{\sqrt[]{2}}}{\frac{2}{2}-\frac{\sqrt[]{2}}{2}} =
\frac{\frac{1}{\sqrt[]{2}}}{\frac{2-\sqrt[]{2}}{2}} = \frac{2}{2\sqrt[]{2}-2}=\frac{1}{\sqrt[]{2}-2}= \frac{1}{\sqrt[]{2}-2}X\frac{\sqrt[]{2}+2}{\sqrt[]{2}+2}=\frac{\sqrt[]{2}+2}{-2}= \sqrt[]{2}-1](/latexrender/pictures/d27f5a8139c4600a6d09ae7b796f454f.png)
Porém o gabarito do livro está dando
![\sqrt[]{2}+1 \sqrt[]{2}+1](/latexrender/pictures/5f9eeb655f30e53d4ae4f7572f9811c7.png)
onde eu errei?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por DanielRJ » Sáb Out 09, 2010 17:55
Bom amigo eu tambem fiz qui no papel e deu esse mesmo resultado...
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sáb Out 09, 2010 18:26
Você errou aqui:

. Refaça, consertando essa parte.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jose henrique » Sáb Out 09, 2010 19:16
boa tarde! fantini.
No caso da dúvida anterior eu não posso simplificar a referida questão
![\frac{2}{2\sqrt[]{2}-2} \frac{2}{2\sqrt[]{2}-2}](/latexrender/pictures/08d555370ad0b2d1599608c711d45911.png)
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por Elcioschin » Sáb Out 09, 2010 20:08
POde sim
2/(2*V2 - 2) = 1/(V2 - 1) = (V2 + 1)/(2 - 1) = V2 + 1
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por jose henrique » Sáb Out 09, 2010 20:43
então a minha resposta está correta?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por MarceloFantini » Sáb Out 09, 2010 21:29
Não, sua resposta está errada. Já mostramos onde você errou, veja:

Prossiga daqui.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- limite da soma de uma pg 2
por jose henrique » Sáb Out 09, 2010 18:03
- 5 Respostas
- 2786 Exibições
- Última mensagem por jose henrique

Qui Out 28, 2010 22:47
Progressões
-
- Limite: Da soma
por Victor Gabriel » Sex Mai 10, 2013 11:49
- 0 Respostas
- 713 Exibições
- Última mensagem por Victor Gabriel

Sex Mai 10, 2013 11:49
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] soma de cubos
por beel » Dom Set 18, 2011 16:49
- 4 Respostas
- 2196 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:09
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] DÚVIDA - soma de quadrados
por beel » Dom Set 18, 2011 17:40
- 3 Respostas
- 1869 Exibições
- Última mensagem por beel

Dom Out 16, 2011 17:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral da soma/Soma das Integrais.
por Sobreira » Ter Abr 30, 2013 17:41
- 0 Respostas
- 2098 Exibições
- Última mensagem por Sobreira

Ter Abr 30, 2013 17:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.