• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A de razão sendo outra P.A, ajuda

P.A de razão sendo outra P.A, ajuda

Mensagempor MariMari » Qui Set 30, 2010 18:55

Bom pessoal, essa é a minha primeira experiência com o fórum, boa tarde :)
Avancei um pouco nessa questão, porem não tive muito sucesso em alguns pontos.

Números naturais ímpares estão dispostos dessa forma

1
3 5
7 9 11
13 15 17 19
21 23 25 27 29

O número que inicia a 51ª linha é ?
(A) 2549 (B) 2551 (C) 2553 (D) 2555 (E) 2547

Bom, cheguei a conclusão de que essa primeira linha esta em progressão aritmética de razão igual a outra progressão aritmética.

{A}_{n}={A}_{1}+\left[\left(n-1 \right)\left({A}_{1*}+\left[n-2 \right]{r}_{*} \right) \right]
r={A}_{1*}+\left[n-2 \right]{r}_{*}

Num momento de quase inércia mental, eu tive um presságio sobre essa razão. Pensei '' na segunda P.A o correto será n-2 ao invés de n-1''
Isso está correto?

Mas voltando... Observando e aplicando essa resolução a valores já conhecidos por mim, já mostrados nessa disposição dos números, percebi que se trocasse r={A}_{1*}+\left[n-2 \right]{r}_{*} por apenas o n da equação '' base '', daria o valor que eu queria achar, ficando assim:

n=r

{A}_{n}={A}_{1}+\left(n-1 \right)n

Usando isso, eu encontrei o valor de (B) 2551

Essa resposta esta correta?
Eu provei pra apenas os valores testados que n=r, como provar isso matematicamente para todos os valores da P.A?
MariMari
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 29, 2010 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.A de razão sendo outra P.A, ajuda

Mensagempor Douglasm » Sex Out 01, 2010 14:44

Olá Mari. Deste jeito inicial, dará errado, pois você estará considerando a razão naquele determinado termo, e contará como se todos os outros termos tivessem sido somados utilizando aquela mesma razão. Você deve é somar todos os termos que tem, até chegar no 51º. Isso é simples, veja só:

3 = 1 + 2

7 = 1 + 2 + 4

13 = 1 + 2 + 4 + 6

21 = 1 + 2 + 4 + 6 + 8

É evidente que o enésimo termo será igual a 1 mais a soma de uma progressão de (n-1) termos e razão 2. Logo:

A_{51} = 1 + {50 . 51} = 2551
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: P.A de razão sendo outra P.A, ajuda

Mensagempor MariMari » Sex Out 01, 2010 15:40

Obrigada Douglas. Hoje cedo, eu refletindo um pouco sobre essa questão, percebi que estava errada. Comecei a fazer novamente e cheguei a r=n, o que se encaixa bem na sua resolução.
MariMari
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 29, 2010 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.