• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de PA, mais uma que estou ficando doida

Questão de PA, mais uma que estou ficando doida

Mensagempor sirle ignes » Qua Mar 10, 2010 20:56

Boa noite

É pra variar essas questões de PA, estão me deixando doida não consigo encontrar a saida para a questão, a principio parece facil, mas meu cerebro não consegue processar o desenvolvimento.

Uma seqüência de números (a1, a2, a3,...) é tal que a soma dos n primeiros termos é dada pela expressão Sn = 3n2 + n.
O valor do 51o termo é
(A) 300 (B) 301
(C) 302 (D) 303
(E) 304
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor MarceloFantini » Qua Mar 10, 2010 22:25

Boa noite.

Primeiro Sirle, quero esclarecer algumas coisas. Existem infinitos tipos de sequências, e progressão aritmética é apenas um desses tipos. Note que no enunciado ele não fala que é uma P.A., mas sim uma sequência. É muito importante que você faça essa distinção.

Com relação ao exercício, vamos pensar: imagine uma soma dessa sequência até o sexto termo, por exemplo:

S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6

Certo? Da mesma maneira, a soma dos cinco primeiros termos será:

S_5 = a_1 + a_2 + a_3 + a_4 + a_5

Agora, se eu quiser o sexto termo apenas, você concorda que eu posso fazer:

S_6 - S_5 = a_6

Acredito que agora você já entendeu. Então, para calcularmos o 51° termo, basta fazer:

S_{51} - S_{50} = a_{51}

Perdoe a minha preguiça de fazer contas no momento, mas acredito que o conceito você já entendeu.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor sirle ignes » Qui Mar 11, 2010 00:14

Fantini,obrigada pela sua atenção
Mais ainda fiquei com duvidas,
Neste caso eu poderia considerar:

Sn=3.n²+1

Sa1=3.1²+1
Sa1=4

Sa2=3.2²+1
Sa2=13

Sa3=3.3²+1
Sa3=28

Correto, assim seria ate o S51?
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor MarceloFantini » Qui Mar 11, 2010 01:15

Não, veja que você está calculando a SOMA até a_n, e não cada elemento independente. Leia o enunciado atentamente:

Uma seqüência de números (a_1, a_2, a_3,...) é tal que a soma dos n primeiros termos é dada pela expressão S_n = 3n^2 + n


Quando você calcula S_3 você está calculando a_1 + a_2 + a_3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor sirle ignes » Qui Mar 11, 2010 10:21

bom dia! fantini

Cheguei a sonhar com essa conta.

entao o correto seria

Sn=3n²+n
S50=3(50)²+50
S50=7550

S51=3(51)²+51
s51=7854

S51-S50=a51
7854-7550=a51
304=a51

Desculpa, fantini, incomodar tanto é so anter a calma e pensar um pouco... mas estou um pouco anciosa..
valeu...
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor MarceloFantini » Qui Mar 11, 2010 17:37

Fico feliz em ter ajudado! Espero ter não soado grosso em nenhum momento, não foi a intenção. Agora que entendeu o processo, consegue resolver mais questões similares.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D