• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de PA, mais uma que estou ficando doida

Questão de PA, mais uma que estou ficando doida

Mensagempor sirle ignes » Qua Mar 10, 2010 20:56

Boa noite

É pra variar essas questões de PA, estão me deixando doida não consigo encontrar a saida para a questão, a principio parece facil, mas meu cerebro não consegue processar o desenvolvimento.

Uma seqüência de números (a1, a2, a3,...) é tal que a soma dos n primeiros termos é dada pela expressão Sn = 3n2 + n.
O valor do 51o termo é
(A) 300 (B) 301
(C) 302 (D) 303
(E) 304
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor MarceloFantini » Qua Mar 10, 2010 22:25

Boa noite.

Primeiro Sirle, quero esclarecer algumas coisas. Existem infinitos tipos de sequências, e progressão aritmética é apenas um desses tipos. Note que no enunciado ele não fala que é uma P.A., mas sim uma sequência. É muito importante que você faça essa distinção.

Com relação ao exercício, vamos pensar: imagine uma soma dessa sequência até o sexto termo, por exemplo:

S_6 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6

Certo? Da mesma maneira, a soma dos cinco primeiros termos será:

S_5 = a_1 + a_2 + a_3 + a_4 + a_5

Agora, se eu quiser o sexto termo apenas, você concorda que eu posso fazer:

S_6 - S_5 = a_6

Acredito que agora você já entendeu. Então, para calcularmos o 51° termo, basta fazer:

S_{51} - S_{50} = a_{51}

Perdoe a minha preguiça de fazer contas no momento, mas acredito que o conceito você já entendeu.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor sirle ignes » Qui Mar 11, 2010 00:14

Fantini,obrigada pela sua atenção
Mais ainda fiquei com duvidas,
Neste caso eu poderia considerar:

Sn=3.n²+1

Sa1=3.1²+1
Sa1=4

Sa2=3.2²+1
Sa2=13

Sa3=3.3²+1
Sa3=28

Correto, assim seria ate o S51?
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor MarceloFantini » Qui Mar 11, 2010 01:15

Não, veja que você está calculando a SOMA até a_n, e não cada elemento independente. Leia o enunciado atentamente:

Uma seqüência de números (a_1, a_2, a_3,...) é tal que a soma dos n primeiros termos é dada pela expressão S_n = 3n^2 + n


Quando você calcula S_3 você está calculando a_1 + a_2 + a_3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor sirle ignes » Qui Mar 11, 2010 10:21

bom dia! fantini

Cheguei a sonhar com essa conta.

entao o correto seria

Sn=3n²+n
S50=3(50)²+50
S50=7550

S51=3(51)²+51
s51=7854

S51-S50=a51
7854-7550=a51
304=a51

Desculpa, fantini, incomodar tanto é so anter a calma e pensar um pouco... mas estou um pouco anciosa..
valeu...
sirle ignes
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Mar 08, 2010 23:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Re: Questão de PA, mais uma que estou ficando doida

Mensagempor MarceloFantini » Qui Mar 11, 2010 17:37

Fico feliz em ter ajudado! Espero ter não soado grosso em nenhum momento, não foi a intenção. Agora que entendeu o processo, consegue resolver mais questões similares.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.