• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo que envolve PA e PG

Calculo que envolve PA e PG

Mensagempor andersontricordiano » Qua Mar 16, 2011 12:21

A seqüência (x+1, x², 14) é uma P.A crescente e (x , 6, y) é uma P.G.
a) Qual é a razão da P.G?
b) Qual é o valor de y

Respostas:
a) 2
b) 12


Por favor me ajudem a resolver esse calculo que envolve PA e PG.
Obrigado quem me ajudar!
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calculo que envolve PA e PG

Mensagempor Molina » Qua Mar 16, 2011 14:05

Boa tarde, Anderson.

Primeiramente você precisa saber os termos da PA para posteriormente saber os termos da PG.

A dica que eu dou é usar uma propriedade básica de PA, onde diz que:

a_2-a_1=a_3-a_2=a_4-a_3=...=a_n-a_{n-1}

Como sua PA tem apenas três termos, a primeira igualdade já é suficiente:

a_2-a_1=a_3-a_2

x^2-(x+1)=14-x^2

2x^2-x-15=0

Ao encontrar esta equação do 2o grau, você acha suas raízes. Serão duas, mas você vai pegar apenas o valor positivo.

Agora que você já encontrou o valor de x, você consegue resolver estas duas questões.


Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.