• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de ângulos

Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 14:50

Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:30

Uma saída é usar a lei dos cossenos, ou seja,

a^2=b^2+c^2-2b\cdot c \cdot \cos\widehat{A}
b^2=a^2+c^2-2a\cdot c \cdot \cos\widehat{B}
c^2=a^2+b^2-2a\cdot b \cdot \cos\widehat{C}

Neste caso, basta usar a=2\sqrt{3}, b=\sqrt{3} e c=3.

Lembre-se que \widehat{A}+\widehat{B}+\widehat{C}=180.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:34

Camila Z escreveu:Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...

Olá Camila Z.
Basta utilizar a lei dos cossenos.

3^2 = (\sqrt3)^2 + (2\sqrt3)^2 - 2(\sqrt3)(2\sqrt3).cos(\alpha) \Rightarrow cos(\alpha) = \frac 12 \Rightarrow \alpha = 60

(\sqrt3)^2 = (3)^2 + (2\sqrt3)^2 - 2(3)(2\sqrt3).cos(\beta) \Rightarrow cos(\beta) = \frac{3}{2\sqrt3} \Rightarrow cos(\beta) = \frac {\sqrt3}{2} \Rightarrow \beta = 30

(2\sqrt3)^2 = (3)^2 + (\sqrt3)^2 - 2(3)(\sqrt3)cos(\gamma)  \Rightarrow cos(\gamma) = 0 \Rightarrow \gamma = 90
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:35

Desculpa ant_dii.
Não vi que a questão já havia sido respondida.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:44

Sem problemas Arkanus, mas acho que o enunciado da questão da Camila esta errado, ou com algum problema, pois diz que o triângulo não é retângulo...

Camila, por favor, verifique o enunciado...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 16:09

Obrigada gente! O enunciado que me foi pedido é esse mesmo, deve estar errado... vou informá-los! :y:
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D