• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de ângulos

Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 14:50

Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:30

Uma saída é usar a lei dos cossenos, ou seja,

a^2=b^2+c^2-2b\cdot c \cdot \cos\widehat{A}
b^2=a^2+c^2-2a\cdot c \cdot \cos\widehat{B}
c^2=a^2+b^2-2a\cdot b \cdot \cos\widehat{C}

Neste caso, basta usar a=2\sqrt{3}, b=\sqrt{3} e c=3.

Lembre-se que \widehat{A}+\widehat{B}+\widehat{C}=180.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:34

Camila Z escreveu:Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...

Olá Camila Z.
Basta utilizar a lei dos cossenos.

3^2 = (\sqrt3)^2 + (2\sqrt3)^2 - 2(\sqrt3)(2\sqrt3).cos(\alpha) \Rightarrow cos(\alpha) = \frac 12 \Rightarrow \alpha = 60

(\sqrt3)^2 = (3)^2 + (2\sqrt3)^2 - 2(3)(2\sqrt3).cos(\beta) \Rightarrow cos(\beta) = \frac{3}{2\sqrt3} \Rightarrow cos(\beta) = \frac {\sqrt3}{2} \Rightarrow \beta = 30

(2\sqrt3)^2 = (3)^2 + (\sqrt3)^2 - 2(3)(\sqrt3)cos(\gamma)  \Rightarrow cos(\gamma) = 0 \Rightarrow \gamma = 90
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:35

Desculpa ant_dii.
Não vi que a questão já havia sido respondida.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:44

Sem problemas Arkanus, mas acho que o enunciado da questão da Camila esta errado, ou com algum problema, pois diz que o triângulo não é retângulo...

Camila, por favor, verifique o enunciado...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 16:09

Obrigada gente! O enunciado que me foi pedido é esse mesmo, deve estar errado... vou informá-los! :y:
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}