• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[trigonometria]

[trigonometria]

Mensagempor Flavia R » Qui Ago 25, 2011 12:07

Considerando-se que a equação senx.cosx=\frac{\sqrt[2]{3}}{4}} tem n soluções no intervalo [0,2\Pi], pode-se afirmar que o valor de n é:


bom, eu tentei elevar os dois lados ao quadrado já, mas não fechou..
Flavia R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Ago 24, 2011 17:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em agrimensura
Andamento: formado

Re: [trigonometria]

Mensagempor gvm » Qui Ago 25, 2011 21:40

Bom, uma dica pra resolver esse tipo de exercício, onde você tem senx . cosx em um dos membros é se lembrar das relações de Arco Duplo, mais especificamente dessa aqui:

sen (2x) = 2.senx.cosx

Pensa em como utilizar isso no exercício em questão, você vai acabar chegando a uma expressão bem mais simples do que se elevasse os dois membros ao quadrado e utilizasse {sen}^{2}x + {cos}^{2}x = 1 para deixar toda a expressão em função do seno ou cosseno

Espero ter ajudado.
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando

Re: [trigonometria]

Mensagempor Flavia R » Qui Ago 25, 2011 22:01

na verdade, eu não consigo ver como a fórmula do arco duplo pode me ajudar..:S
Flavia R
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Ago 24, 2011 17:14
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em agrimensura
Andamento: formado

Re: [trigonometria]

Mensagempor gvm » Qui Ago 25, 2011 22:09

A expressão é a seguinte:

senx . cosx = \sqrt[2]{3}/4

Multiplicando os dois membros da equação por 2 obtem-se:

2.senx . cosx = \sqrt[2]{3}/2

Sabe-se que sen(2x) = 2.senx.cosx, portanto:

sen(2x) = \sqrt[2]{3}/2

Agora que temos toda a expressão em função apenas do seno é só resolver normalmente e encontrar as soluções contidas no intervalo especificado, lembrando que as soluções da equação são os valores de x e não de 2x.

Esperto ter ajudado
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando


Voltar para Trigonometria

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)