• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área de triângulos quaisquer

Área de triângulos quaisquer

Mensagempor -Sarah- » Seg Ago 19, 2013 20:32

Determine a área do triângulo ABC e a medida do lado a. É um triângulo acutângulo, de lados b e c valendo, \sqrt[]{2} e \sqrt[]{3}, respectivamente. E o ângulo A vale 75º.
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Seg Ago 19, 2013 22:41

pela lei dos cossenos

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.cos(75^o)

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.cos(30^o+45^o)

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.(cos(30^o)cos(45^o)-sen(30^o)cos(45^o))

a^2=(\sqrt2)^2+(\sqrt3)^2-2.\sqrt2.\sqrt3.(\frac{\sqrt3}{2}.\frac{\sqrt2}{2}-\frac{1}{2}\frac{\sqrt2}{2})

tente concluir a partir daqui e qualquer duvida comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:05

{a}^{2}= 2+3 - 2 \sqrt[]{6}(\frac{\sqrt[]{6}}{4}-\frac{\sqrt[]{2}}{4})

{a}^{2}= 5 - \frac{2\sqrt[]{6}.\sqrt[]{6}}{4}+ \frac{2\sqrt[]{6}.\sqrt[]{2}}{4}

{a}^{2}= 5 - \frac{12}{4}+ \frac{2.2\sqrt[]{3}}{4}

a = \sqrt[]{5 - 3 +\sqrt[]{3}}

É assim? Achei o resultado estranho..
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Ter Ago 20, 2013 21:13

é isso ai mesmo

\sqrt{2+\sqrt3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:14

Ah! Vlw
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor -Sarah- » Ter Ago 20, 2013 21:21

E como eu calculo a área?
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área de triângulos quaisquer

Mensagempor young_jedi » Ter Ago 20, 2013 23:48

a área é dada por

A=\frac{\sqrt2.\sqrt3.sen(75^o)}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}