• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de triângulos quaisquer.

Resolução de triângulos quaisquer.

Mensagempor rodsales » Dom Nov 15, 2009 18:45

Dois lados de um triângulo medem 6m e 10m e formam entre si um ângulo de 120º. Determine a medida do terceiro lado.


O que eu gostaria de saber quando vou calcular um exercício desse estilo se terei que usar a lei dos senos ou dos cossenos? E por quê?



obs: esse exercício é bem simples, mas sempre fico na dúvida em qual usar.



Grato.
Avatar do usuário
rodsales
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Ter Abr 14, 2009 21:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: administração
Andamento: cursando

Re: Resolução de triângulos quaisquer.

Mensagempor Lucio Carvalho » Seg Nov 16, 2009 10:56

Olá rodsales,
Tentarei ajudar.
Como bem sabes, para qualquer triângulo são conhecidas as fórmulas:

\frac{a}{sen\alpha}=\frac{b}{sen\beta}=\frac{c}{sen\gamma} (teorema dos senos)

{a}^{2}={b}^{2}+{c}^{2}-2.b.c.cos\alpha (teorema dos co-senos)

Estas relações permitem resolver triângulos, isto é, conhecidos alguns dos seus elementos podem determinar-se os outros.

De acordo com o teu exercício, temos os comprimentos de dois lados e o ângulo por eles formado. Assim, vamos utilizar o teorema dos co-senos.

{a}^{2}={6}^{2}+{10}^{2}-2.6.10.cos120º

{a}^{2}=36+100-120.cos(180º-60º)

{a}^{2}=136-120.(-cos60º)

{a}^{2}=136+120.\frac{1}{2}

{a}^{2}=136+60

a=\sqrt[]{196}

a=14

Nota: Quando sabemos, por exemplo, as medidas de dois lados de triângulo e o ângulo oposto a um deles, podemos utilizar o teorema dos senos.

Espero ter ajudado e até breve!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.