por rodsales » Dom Ago 30, 2009 10:23
Simplificando a expressão (cos²x - cotgx)/sen²x - senx:
Fiz de todas maneiras possíveis não chegando a resultado nenhum.
Grato,
Aguardo respostas.
-

rodsales
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Ter Abr 14, 2009 21:28
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: administração
- Andamento: cursando
por Elcioschin » Dom Ago 30, 2009 10:37
rodsales
1) Tem certeza do enunciado? Coloque o enunciado COMPLETO!!!
2) Qual é o denominador? É sen²x ou (sen²x - senx) ?
3) Se você diz que não conseguiu é porque sabe a resposta. Qual é a resposta ?
4) Existem alternativas ?
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por rodsales » Dom Ago 30, 2009 10:48
Vou escrever da mesma maneira que está no livro.
Simplificando a expressão (cos²x - cotgx)/(sen²x - tgx) , obtemos:
Resposta: cotg²x
Grato,
obs: nesse exercício está pedindo a identidade da expressão.
-

rodsales
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Ter Abr 14, 2009 21:28
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: administração
- Andamento: cursando
por Lucio Carvalho » Dom Ago 30, 2009 11:16
Olá rodsales,
Apresento em seguida uma das possíveis simplificações por mim encontrada.



Espero ter ajudado e até breve!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por Elcioschin » Dom Ago 30, 2009 14:32
rodsales
Espero que você tenha entendido como é importante colocar o enunciado COMPLETO e CORRETO!
Veja que você esqueceu de colocar os parenteses e trocou cotgx por senx no denominador e esqueceu de mostrar a resposta ou as alternativas.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- fatorial simplifique:
por natanskt » Ter Dez 07, 2010 13:36
- 3 Respostas
- 8043 Exibições
- Última mensagem por Molina

Ter Jun 28, 2011 20:27
Binômio de Newton
-
- Simplifique a expressão:
por andersontricordiano » Dom Jan 22, 2012 22:03
- 2 Respostas
- 7383 Exibições
- Última mensagem por laura1970

Ter Jun 11, 2013 10:50
Estatística
-
- Simplifique a Fração
por plugpc » Qui Mai 03, 2012 18:30
- 1 Respostas
- 1555 Exibições
- Última mensagem por DanielFerreira

Qui Mai 03, 2012 20:44
Sistemas de Equações
-
- [Potenciação] Simplifique
por SCHOOLGIRL+T » Qua Nov 07, 2012 21:29
- 2 Respostas
- 1378 Exibições
- Última mensagem por SCHOOLGIRL+T

Sex Nov 09, 2012 23:49
Álgebra Elementar
-
- simplifique as expressoes
por laura1970 » Seg Abr 22, 2013 16:03
- 3 Respostas
- 1753 Exibições
- Última mensagem por laura1970

Seg Abr 22, 2013 21:26
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.