• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Triângulo Retângulo

Triângulo Retângulo

Mensagempor nathyn » Qua Mar 21, 2012 16:35

oiiee, tentei fazer essa questão mas nao consegui, se alguem poder me ajudar, por favor...

Seja o triângulo ABC, onde A(0, 0), B(2, 0) e C(2, 2?3). Se a medida do ângulo interno referente ao vértice A for reduzida em 50%, a área do triângulo ficará
a) 75% menor b) 50% menor c) 33% menor d) 30% menor e) 25% meno


Bom, eu montei o triangulo, usei teorema de pitagoras para encontrar a hipotenusa e usei a relação cosseno para achar os valores dos angulos e ficou assim:


Imagem

Bom reduzindo em 50% o ângulo A sei que ficará:


Imagem



Mas não sei qual a relação disso com os lados -(.
Me ajude por favor.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Triângulo Retângulo

Mensagempor fraol » Dom Abr 08, 2012 00:12

Seguindo os seus desenhos temos:

No primeiro triângulo, a área é:

A_1 = \frac{1}{2} med(AB) . med(BC) = \frac{1}{2}.2.2\sqrt{3} \iff A_1 = 2\sqrt{3}.

No segundo triângulo, a tangente de 30 graus é: tg 30^{\circ} = \frac{BC}{2}, mas tg 30^{\circ} = \frac{\sqrt{3}}{3}, então:

\frac{BC}{2} = \frac{\sqrt{3}}{3} \iff BC = 2 \frac{\sqrt{3}}{3}.

Assim, no segundo triângulo, a área é:

A_2 = \frac{1}{2} med(AB) . med(BC) = \frac{1}{2} . 2 . 2 \frac{\sqrt{3}}{3} \iff A_2 = 2 \frac{\sqrt{3}}{3}.

\iff A_2 =  \frac{1}{3} . 2\sqrt{3}

Observe que a área do segundo triângulo é igual a um terço da área do primeiro triângulo.
Então a área do segundo triângulo é dois terços menor do que a área do primeiro.
Como dois terços é igual a aproximadamente 67% então não há alternativa correta.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}