• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de ângulos

Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 14:50

Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:30

Uma saída é usar a lei dos cossenos, ou seja,

a^2=b^2+c^2-2b\cdot c \cdot \cos\widehat{A}
b^2=a^2+c^2-2a\cdot c \cdot \cos\widehat{B}
c^2=a^2+b^2-2a\cdot b \cdot \cos\widehat{C}

Neste caso, basta usar a=2\sqrt{3}, b=\sqrt{3} e c=3.

Lembre-se que \widehat{A}+\widehat{B}+\widehat{C}=180.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:34

Camila Z escreveu:Sabendo que os lados de um triãngulo "não retângulo" medem 3, \sqrt[]{3}, 2\sqrt[]{3}, calcular os ângulos...

Olá Camila Z.
Basta utilizar a lei dos cossenos.

3^2 = (\sqrt3)^2 + (2\sqrt3)^2 - 2(\sqrt3)(2\sqrt3).cos(\alpha) \Rightarrow cos(\alpha) = \frac 12 \Rightarrow \alpha = 60

(\sqrt3)^2 = (3)^2 + (2\sqrt3)^2 - 2(3)(2\sqrt3).cos(\beta) \Rightarrow cos(\beta) = \frac{3}{2\sqrt3} \Rightarrow cos(\beta) = \frac {\sqrt3}{2} \Rightarrow \beta = 30

(2\sqrt3)^2 = (3)^2 + (\sqrt3)^2 - 2(3)(\sqrt3)cos(\gamma)  \Rightarrow cos(\gamma) = 0 \Rightarrow \gamma = 90
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 15:35

Desculpa ant_dii.
Não vi que a questão já havia sido respondida.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cálculo de ângulos

Mensagempor ant_dii » Ter Jan 17, 2012 15:44

Sem problemas Arkanus, mas acho que o enunciado da questão da Camila esta errado, ou com algum problema, pois diz que o triângulo não é retângulo...

Camila, por favor, verifique o enunciado...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Cálculo de ângulos

Mensagempor Camila Z » Ter Jan 17, 2012 16:09

Obrigada gente! O enunciado que me foi pedido é esse mesmo, deve estar errado... vou informá-los! :y:
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?