• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conversão de ângulos.

Conversão de ângulos.

Mensagempor Phisic » Dom Nov 06, 2011 16:43

Estou precisando obter uma conversão de radianos para graus com a função abaixo mas a resposta obtida não é a correta, exemplo: cos(90) em graus é 0 "zero" mas minha função retorna -25.6727;

a formula consegui no site:
http://www.teacherschoice.com.au/maths_library/angles/angles.htm
Pergunto se o erro esta na minha interpretação da resposta ou no implementação da formula.


#define RADIANS_TO_DEGREES(radianos) ((radianos) * (180.0 / M_PI))

RADIANS_TO_DEGREES(cos(90))

-25.6727

O contexto de minha dúvida esta no tópico abaixo onde preciso rotacionar um ponto no espaço.

http://www.ajudamatematica.com/viewtopic.php?f=109&t=6126&p=21293&hilit=rota%C3%A7%C3%A3o#p21293
Phisic
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jul 21, 2011 12:32
Localização: Cascavel Pr.
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Conversão de ângulos.

Mensagempor rds0708 » Qua Mar 07, 2012 06:54

Olá.

Não sei se o usuário ainda precisa de ajuda (devido a data), mas tento fazer o que posso para ajudar no que eu sei e, se caso alguém tenha interesse neste tópico, como eu vi, possa saber de alguma coisa. Enfim...

Eu li sua dúvida e me parece que você é programador e deseja transformar um devido valor de radianos para graus. Uma maneira de você fazer este tipo de operação é criar uma função (eu estou falando sobre a linguagem de programação, que acredito ser o C que você usa) que retorne um valor que seria o valor em graus procurado por você. Passe para esta função o valor em radianos que você deseja transformar e retorne nesta função:

RAD * 180 / PI

Lembrando que o valor provavelmente sairá "quebrado", portanto utilize um tipo double para maior precisão nos cálculos.

Outra coisa que notei (só agora por sinal), ultimamente tenho tido a mesma dúvida quase e abri um tópico sobre o assunto, mas o valor que é retornado por qualquer função trigonométrica, seno, cosseno e tangente não é em radianos, mas sim um valor da conhecida tabela trigonométrica.

Espero que eu não tenha feito "besteira" em ajudar um tópico não respondido na segunda página de trigonometria criado a um certo tempo já. Além do mais, espero ter ajudado. Além do que, eu não sou programador C, mas acredito que existam libs com a qual você possa tirar proveito disso.

Até.
rds0708
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Mar 06, 2012 23:34
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?