• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raízes da equação

Raízes da equação

Mensagempor Andreza » Ter Nov 01, 2011 12:31

Boa tarde,

Estou estudando para prestar concurso, pois fiz matemática e pós, mas estou encontrando muitas dificuldades diante das questões propostas pela banca organizadora FCC, este exercício q estou postando na verdade nem sei como começar, pois nao foram dados nenhum valores pra x. Espero q vcs possam me ajudar e se algum de vcs moderadores, forem professores de aulas particulares favor entrar em contato q pelo jeito eu estou precisando de umas aulas extras. Aguardo resposta, desde já fico muito grata. Obs. : Eu já comprei curso on line e apostilas, mas mesmo assim está muito difícil para o nível do concurso.

Quais são as raízes da equação sen²x - ( 2sen x cos x - cos²x) = 0 em [0,2pi] ?
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Raízes da equação

Mensagempor Neperiano » Ter Nov 01, 2011 14:19

Ola

O que o Marcelo fez está correto:

MarceloFantini escreveu:Andreza, desconsidere a resposta do Neperiano. Primeiro, é interessante lembrar algumas relações trigonométricas úteis: \textrm{sen}^2 x + \cos^2 x = 1 e 2 \cdot \textrm{sen } x \cdot \cos x = \textrm{sen}(2x). Desta forma, a equação se torna:

sen^2 \, x - (2 sen \, x \cos x - \cos^2 x) = sen^2 \, x - sen \, (2x) + \cos^2 x =

= 1 - sen \, (2x) = 0 \implies sen \ (2x) = 1.

Isto significa que 2x = \frac{\pi}{2} e daí x = \frac{\pi}{4}.


Atenciosamente
Editado pela última vez por Neperiano em Ter Nov 01, 2011 15:18, em um total de 1 vez.
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Raízes da equação

Mensagempor MarceloFantini » Ter Nov 01, 2011 15:11

Andreza, desconsidere a resposta do Neperiano. Primeiro, é interessante lembrar algumas relações trigonométricas úteis: \textrm{sen}^2 x + \cos^2 x = 1 e 2 \cdot \textrm{sen } x \cdot \cos x = \textrm{sen}(2x). Desta forma, a equação se torna:

sen^2 \, x - (2 sen \, x \cos x - \cos^2 x) = sen^2 \, x - sen \, (2x) + \cos^2 x =

= 1 - sen \, (2x) = 0 \implies sen \ (2x) = 1.

Isto significa que 2x = \frac{\pi}{2} e daí x = \frac{\pi}{4}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Marcelo F

Mensagempor Andreza » Ter Nov 01, 2011 18:04

Muito obrigada Marcelo.
Na verdade eu só conhecia a primeira relação fundamental q vc mencionou na resolução do exercício.
Agora vou incluir a segunda nos outros exercícios q estou estudando.
Sendo x =45 graus como faço para encontar a segunda raiz?
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?