tem n soluções no intervalo
, pode-se afirmar que o valor de n é:bom, eu tentei elevar os dois lados ao quadrado já, mas não fechou..
tem n soluções no intervalo
, pode-se afirmar que o valor de n é:
em um dos membros é se lembrar das relações de Arco Duplo, mais especificamente dessa aqui:
para deixar toda a expressão em função do seno ou cosseno

![senx . cosx = \sqrt[2]{3}/4 senx . cosx = \sqrt[2]{3}/4](/latexrender/pictures/3090ab3e2f3e0be0010e985e3268dcae.png)
![2.senx . cosx = \sqrt[2]{3}/2 2.senx . cosx = \sqrt[2]{3}/2](/latexrender/pictures/1e1d7db4d9522ac460a941320a32aa98.png)
, portanto:![sen(2x) = \sqrt[2]{3}/2 sen(2x) = \sqrt[2]{3}/2](/latexrender/pictures/888b7f9725fa7bd7660f0fe08d75d73a.png)
e não de
.
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)