• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Identidade trigonometrica

[Trigonometria] Identidade trigonometrica

Mensagempor Alvadorn » Sáb Ago 13, 2011 17:47

Determine a identidade de:
\left( \sin x + \tan x\right) \left( \cos x + \cot x\right) = (1 + \sin x) (1 + \cos x)

Preciso de uma ajuda na resolução.
Eu tentei chamar um termo de f(x) e o outro de g(x) e resolver separadamente, mas não deu muito certo.

Desde já agradeço.
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Trigonometria] Identidade trigonometrica

Mensagempor Caradoc » Sáb Ago 13, 2011 20:20

Como:
\tan x = \frac{\sin x}{\cos x} \;\;\;\; \cot x = \frac{\cos x}{\sin x}}

Substituindo:

\left( \sin x + \frac{\sin x}{\cos x}\right) \left( \cos x + \frac{\cos x}{\sin x}\right) = (1 + \sin x) (1 + \cos x)

Multiplicando:

\sin x \cos x + \cos x + \sin x + 1 = (1+\sin x)(1+\cos x)

E reagrupando:

(1 + \sin x) (1 + \cos x) =  (1 + \sin x) (1 + \cos x)

Mostramos que a identidade é verdadeira.
Acredito que seja isso.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Trigonometria] Identidade trigonometrica

Mensagempor Alvadorn » Sáb Ago 13, 2011 20:27

Eu apenas não compreendi uma coisa
\sin x.\cos x = 1
?


EDIT:
Esquece minha pergunta, já entendi o que fazer ja!
Obrigado pelo auxilio!
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.