por Pre-Universitario » Ter Ago 09, 2011 18:00
Um rapaz observa o topo de um predio sob uma ngulo de 60 Graus.
Depois, se afasatando 100m vendo o predio sob um agulo agora de 30 Graus.
Qual a altura do predio.
Obs: a resposta ñ e em metros
Bom ! eu fiz e refiz essa questão varias veses mas ñ consegui achar o
resultado
quem poder fazer eu agradeço !
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
por LuizAquino » Ter Ago 09, 2011 19:34
Esse exercício é análogo ao outro que você enviou no tópico:
[altura do prédio] A resposta esta correta ?viewtopic.php?f=109&t=5563Qual foi exatamente a sua dificuldade? Em que unidade de comprimento está exibida a resposta?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Pre-Universitario » Qua Ago 10, 2011 15:41
bom !
eu faço exatamente como o outro mas não consigo
achar essa resposta
![50\sqrt[]{3} 50\sqrt[]{3}](/latexrender/pictures/a83891c2a3a81fce40dac1276923bf36.png)
-
Pre-Universitario
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Sex Ago 05, 2011 17:16
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: formado
por LuizAquino » Qui Ago 11, 2011 19:39
O exercício pode ser simplificado na figura abaixo. No caso, a altura do observador foi ignorada.

- altura_do_prédio.png (3.9 KiB) Exibido 1256 vezes
Podemos então escrever o sistema:

Isso é o mesmo que:

Da primeira equação, temos que

.
Podemos então reescrever a segunda equação como

. Resolvendo essa equação, obtemos

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.