• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pre-Universitario (Trigonometria)

Pre-Universitario (Trigonometria)

Mensagempor Pre-Universitario » Ter Ago 09, 2011 18:00

Um rapaz observa o topo de um predio sob uma ngulo de 60 Graus.
Depois, se afasatando 100m vendo o predio sob um agulo agora de 30 Graus.
Qual a altura do predio.
Obs: a resposta ñ e em metros
Bom ! eu fiz e refiz essa questão varias veses mas ñ consegui achar o
resultado
quem poder fazer eu agradeço !
Pre-Universitario
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Ago 05, 2011 17:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: formado

Re: Pre-Universitario (Trigonometria)

Mensagempor LuizAquino » Ter Ago 09, 2011 19:34

Esse exercício é análogo ao outro que você enviou no tópico:
[altura do prédio] A resposta esta correta ?
viewtopic.php?f=109&t=5563

Qual foi exatamente a sua dificuldade? Em que unidade de comprimento está exibida a resposta?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Pre-Universitario (Trigonometria)

Mensagempor Pre-Universitario » Qua Ago 10, 2011 15:41

bom !
eu faço exatamente como o outro mas não consigo
achar essa resposta 50\sqrt[]{3}
Pre-Universitario
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Ago 05, 2011 17:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: formado

Re: Pre-Universitario (Trigonometria)

Mensagempor LuizAquino » Qui Ago 11, 2011 19:39

O exercício pode ser simplificado na figura abaixo. No caso, a altura do observador foi ignorada.

altura_do_prédio.png
altura_do_prédio.png (3.9 KiB) Exibido 1257 vezes


Podemos então escrever o sistema:

\begin{cases}
\textrm{tg}\,60^\circ = \frac{h}{d} \\
\textrm{tg}\,30^\circ = \frac{h}{d+100}
\end{cases}

Isso é o mesmo que:

\begin{cases}
\sqrt{3} = \frac{h}{d} \\
\frac{\sqrt{3}}{3} = \frac{h}{d+100}
\end{cases}

Da primeira equação, temos que d = \frac{h}{\sqrt{3}} .

Podemos então reescrever a segunda equação como \frac{\sqrt{3}}{3} = \frac{h}{\frac{h}{\sqrt{3}} + 100} . Resolvendo essa equação, obtemos h = 50\sqrt{3} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Trigonometria

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.