• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo] Como encontrar o valor de x na munheca?

[Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor carvalhothg » Ter Set 13, 2011 15:43

Como resolver o exercício abaixo sem uso de computador, ou seja, como encontrar o valor de x na munheca?

Pois estou tentando usar ln mas chega uma hora que eu travo, poderiam me ajudar?


{x}^{2}-5x+7={e}^{x-3}
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor Neperiano » Ter Set 13, 2011 18:23

Ola

Coloque o ln nos dois lados da equação vai ficar

Ln(função)=x-3

Mostre o que você fez para que possamos dar uma olhada

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor MarceloFantini » Ter Set 13, 2011 19:27

Poste o enunciado. Isto me parece aquelas questões que perguntam quantas raízes existem para a equação e claramente não pede a questão analiticamente pois é muito difícil/aproximada.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor LuizAquino » Ter Set 13, 2011 22:21

carvalhothg escreveu:Como resolver o exercício abaixo sem uso de computador, ou seja, como encontrar o valor de x na munheca?

{x}^{2}-5x+7={e}^{x-3}


Essa é uma equação transcendental. Tipicamente, as equações transcendentais não possuem solução analítica. Isto é, usando a sua expressão: não dá para resolver "na munheca" essas equações. Portanto, é necessário aplicar métodos numéricos ou gráficos para resolvê-las. Entretanto, uma primeira estratégia é procurar por soluções triviais.

Note que o valor mais trivial que podemos pensar para o segundo membro da equação é quando x = 3, pois teremos e^{3 - 3} = e^0 = 1. Precisamos agora verificar se para x = 3 o primeiro membro da equação também resulta em 1. De fato, temos que 3^2 - 5\cdot 3 + 7 = 9 - 15 + 7 = 1 . Logo, x = 3 é uma solução dessa equação.

Se houver outra solução, então ela não é mais trivial e algum método numérico ou gráfico deve ser aplicado. Por exemplo, aplicando o Método de Newton podemos encontrar que outra raiz dessa equação é aproximadamente x = 4,7933.

Aproveito ainda para lembrar que nos cursos de graduação da área de exatas há uma disciplina chamada Cálculo Numérico. Um dos objetivos dessa disciplina é exatamente aprender técnicas numéricas que permitem calcular a solução de equações como essa.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor carvalhothg » Ter Set 13, 2011 22:48

LuizAquino escreveu:
carvalhothg escreveu:Como resolver o exercício abaixo sem uso de computador, ou seja, como encontrar o valor de x na munheca?

{x}^{2}-5x+7={e}^{x-3}


Essa é uma equação transcendental. Tipicamente, as equações transcendentais não possuem solução analítica. Isto é, usando a sua expressão: não dá para resolver "na munheca" essas equações. Portanto, é necessário aplicar métodos numéricos ou gráficos para resolvê-las. Entretanto, uma primeira estratégia é procurar por soluções triviais.

Note que o valor mais trivial que podemos pensar para o segundo membro da equação é quando x = 3, pois teremos e^{3 - 3} = e^0 = 1. Precisamos agora verificar se para x = 3 o primeiro membro da equação também resulta em 1. De fato, temos que 3^2 - 5\cdot 3 + 7 = 9 - 15 + 7 = 1 . Logo, x = 3 é uma solução dessa equação.

Se houver outra solução, então ela não é mais trivial e algum método numérico ou gráfico deve ser aplicado. Por exemplo, aplicando o Método de Newton podemos encontrar que outra raiz dessa equação é aproximadamente x = 4,7933.

Aproveito ainda para lembrar que nos cursos de graduação da área de exatas há uma disciplina chamada Cálculo Numérico. Um dos objetivos dessa disciplina é exatamente aprender técnicas numéricas que permitem calcular a solução de equações como essa.



Aquino,

primeiramente muito obrigado pela ajuda....sem quer abusar muito da sua boa vontade...você poderia ensinar a utilizar este método de newton?
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor MarceloFantini » Ter Set 13, 2011 22:52

Aqui está um artigo na wikipedia falando sobre: http://pt.wikipedia.org/wiki/M%C3%A9todo_de_newton .
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Logaritmo] Como encontrar o valor de x na munheca?

Mensagempor LuizAquino » Qua Set 14, 2011 00:06

carvalhothg escreveu:Aquino,

primeiramente muito obrigado pela ajuda....sem quer abusar muito da sua boa vontade...você poderia ensinar a utilizar este método de newton?

É mais interessante que você procure por um livro de Cálculo Numérico. Ou ainda, visite o endereço indicado pelo colega Fantini. Há também um vasto material disponível na internet ensinando a usar esse método. Eu recomendo que você faça uma pesquisa. Com certeza você vai encontrar muito material. :y:
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}