• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda

Ajuda

Mensagempor Guilherme Carvalho » Qui Set 01, 2011 21:27

galera me ajuda a achar o valor desta expressão por favor ln({ln}^{{e}^{10}})



OBS: o e que esta elevado a 10 e o número de Euler..
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Ajuda

Mensagempor Molina » Qui Set 01, 2011 22:21

Boa noite, Guilherme.

Confirme, você escreveu dentro do parênteses ln elevado a e, e elevado a 10. Isso não faz muito sentido...

Caso você tenha tentado escrever ln({ln}{{e}^{10}}), avise.



:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Ajuda

Mensagempor Guilherme Carvalho » Sex Set 02, 2011 00:45

O pior que isso mesmo, por isso estou achando estranho nunca vi isso não sei nem por onde começar
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Ajuda

Mensagempor LuizAquino » Sex Set 02, 2011 11:35

Guilherme Carvalho escreveu:O pior que isso mesmo, por isso estou achando estranho nunca vi isso não sei nem por onde começar

O que você escreveu originalmente é uma operação inválida e portanto não pode ser calculada: \ln\left(\ln^{e^{10}}\right) .

Se você viu exatamente isso em algum lugar, então o mais provável é que houve um erro de digitação.

Por outro lado, a expressão que o colega Molina escreveu é uma operação válida e portanto pode ser calculada: \ln\left(\ln e^{10}\right) .

No caso, basta aplicar as regras de logaritmos:

\ln\left(\ln e^{10}\right) = \ln\left(10 \ln e\right) = \ln\left(10 \cdot 1\right) = \ln 10 \approx 2,3026
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}