• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:16

3-)(ESPCEX) A soma de 2 numeros reais é igual a 7 e a soma dos seus logaritmos na base 100 é 1/2.
o módulo da diferença entre esses dois números é igual a:
a-)0,04
b-)0,02
c-)1
d-)3
e-)2

tambem queria saber o que significa módulo.

valeu !
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:22

Vamos interpretar o enunciado:

A soma de dois números reais é 7:

a+b = 7

A soma dos seus logaritmos na base 100 é \frac{1}{2}:

\log_{100} a + \log_{100} b = \frac{1}{2}

Agora vamos trabalhar com essas informações. A primeira equação não há muito o que fazer, já a segunda pode ser melhorada:

\log_{100} a + \log_{100} b = \frac{1}{2} \rightarrow \log_{100} (a \cdot b) = \frac{1}{2}

Lembrando a definição de logaritmos (\log_x z = w \Leftrightarrow x^w = z, com as restrições):

ab = 100^{\frac{1}{2}} \rightarrow ab = \sqrt{100} = 10

Então temos duas equações:

a+b=7
ab=10

Primeiro modo:

ab= 10 \rightarrow b=\frac{10}{a}

Substituindo na segunda:

a+b =7 \rightarrow a + \frac{10}{a} = 7 \rightarrow a^2 +10 = 7a \rightarrow a^2 -7a +10 = 0

Posso fazer isso pois é certeza que a \neq 0. Então:

\Delta = (-7)^2 -4 \cdot 1 \cdot 10 = 49 - 40 = 9

a = \frac{-b \pm \sqrt {\Delta}}{2a} = \frac{- (-7) \pm \sqrt{9}}{2 \cdot 1} = \frac{7 \pm 3}{2}

Respostas: a = 5 e b = 2 ou a = 2 e b = 5.

Segundo modo:

a+b = 7 \rightarrow b = 7-a

ab = 10 \rightarrow a(7-a) = 10 \rightarrow 7a -a^2 -10 = 0

Multiplicando por (-1):

a^2 -7a +10 = 0

Veja que são meios equivalentes de se chegar na mesma resposta.

Agora entra a importância do módulo.

Módulo quer dizer distância. Módulo entre dois números quer dizer a distância entre eles na reta real. Note que a distância de 5 até 2 é 3, e a distância de 2 até 5 também é 3, porém o que muda é o sentido, simbolizado pelo sinal negativo quando vamos no sentido contrário (ou seja, de 5 para 2). Assim:

|5-2| = |2-5| = 3

Distância é sempre um número positivo, ou seja, um número absoluto.

Alternativa D.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor natanskt » Qua Out 13, 2010 10:20

fantini,está certo esse jeito que eu fiz....
A+B=7
A.B=10
1+6=7----1.6=6 errado
4+3=7----4.3=12 errado
5+2=7---5.2=10 igual a a.b=10

5-2=3

está certo isso?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Qua Out 13, 2010 13:50

Sim, está errado pois não se deve fazer por tentativa e erro, pois é fácil ele colocar uma pegadinha tal que exista uma resposta assim mas que esteja errada. Você tem que entender o que está acontecendo, o porque do método.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.