• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:16

3-)(ESPCEX) A soma de 2 numeros reais é igual a 7 e a soma dos seus logaritmos na base 100 é 1/2.
o módulo da diferença entre esses dois números é igual a:
a-)0,04
b-)0,02
c-)1
d-)3
e-)2

tambem queria saber o que significa módulo.

valeu !
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:22

Vamos interpretar o enunciado:

A soma de dois números reais é 7:

a+b = 7

A soma dos seus logaritmos na base 100 é \frac{1}{2}:

\log_{100} a + \log_{100} b = \frac{1}{2}

Agora vamos trabalhar com essas informações. A primeira equação não há muito o que fazer, já a segunda pode ser melhorada:

\log_{100} a + \log_{100} b = \frac{1}{2} \rightarrow \log_{100} (a \cdot b) = \frac{1}{2}

Lembrando a definição de logaritmos (\log_x z = w \Leftrightarrow x^w = z, com as restrições):

ab = 100^{\frac{1}{2}} \rightarrow ab = \sqrt{100} = 10

Então temos duas equações:

a+b=7
ab=10

Primeiro modo:

ab= 10 \rightarrow b=\frac{10}{a}

Substituindo na segunda:

a+b =7 \rightarrow a + \frac{10}{a} = 7 \rightarrow a^2 +10 = 7a \rightarrow a^2 -7a +10 = 0

Posso fazer isso pois é certeza que a \neq 0. Então:

\Delta = (-7)^2 -4 \cdot 1 \cdot 10 = 49 - 40 = 9

a = \frac{-b \pm \sqrt {\Delta}}{2a} = \frac{- (-7) \pm \sqrt{9}}{2 \cdot 1} = \frac{7 \pm 3}{2}

Respostas: a = 5 e b = 2 ou a = 2 e b = 5.

Segundo modo:

a+b = 7 \rightarrow b = 7-a

ab = 10 \rightarrow a(7-a) = 10 \rightarrow 7a -a^2 -10 = 0

Multiplicando por (-1):

a^2 -7a +10 = 0

Veja que são meios equivalentes de se chegar na mesma resposta.

Agora entra a importância do módulo.

Módulo quer dizer distância. Módulo entre dois números quer dizer a distância entre eles na reta real. Note que a distância de 5 até 2 é 3, e a distância de 2 até 5 também é 3, porém o que muda é o sentido, simbolizado pelo sinal negativo quando vamos no sentido contrário (ou seja, de 5 para 2). Assim:

|5-2| = |2-5| = 3

Distância é sempre um número positivo, ou seja, um número absoluto.

Alternativa D.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor natanskt » Qua Out 13, 2010 10:20

fantini,está certo esse jeito que eu fiz....
A+B=7
A.B=10
1+6=7----1.6=6 errado
4+3=7----4.3=12 errado
5+2=7---5.2=10 igual a a.b=10

5-2=3

está certo isso?
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Qua Out 13, 2010 13:50

Sim, está errado pois não se deve fazer por tentativa e erro, pois é fácil ele colocar uma pegadinha tal que exista uma resposta assim mas que esteja errada. Você tem que entender o que está acontecendo, o porque do método.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)