• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo (Unip-SP)

Logaritmo (Unip-SP)

Mensagempor JailsonJr » Sáb Mai 22, 2010 05:16

(Unip-SP) Se os números reais positivos x e y forem tais que

{log}_{10}{2}^{x}+{log}_{10}{3}^{y}=1

{log}_{10}{8}^{x}+{log}_{10}{9}^{y}=2
Então:

Resp.: y={log}_{3}10
-------------------
Minha tentativa:
{log}_{10}{2}^{x}+{log}_{10}{3}^{y}=1

x{log}_{10}{2}^{}+y{log}_{10}{3}^{}=1 \leftarrow

{log}_{10}{8}^{x}+{log}_{10}{9}^{y}=2

{log}_{10}{2}^{3x}+{log}_{10}{3}^{2y}=2

3x{log}_{10}2+2y{log}_{10}3=2 \leftarrow

Fiz um sistema, mas não deu certo ou fiz errado ...
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo (Unip-SP)

Mensagempor JailsonJr » Dom Mai 23, 2010 14:37

Alguém?
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo (Unip-SP)

Mensagempor Douglasm » Seg Mai 24, 2010 14:12

Como você já fez o sistema, vamos partir dele:

x log_{10}^2 + y log_{10}^3 = 1 \; \therefore \; x = \frac{1 - y log_{10}^3}{log_{10}^2}

Agora substituimos esse valor na outra equação:

3x log_{10}^2 + 2y log_{10}^3 = 2 \; \therefore \; 3(1 - y log_{10}^3) +  2y log_{10}^3 = 2 \; \therefore \; y log_{10}^3 = 1 \; \therefore \;

y = \frac{1}{log_{10}^3} = log_3^{10}

Se substituirmos esse valor em qualquer uma das outras equações, encontraremos x = 0.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59