• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo (Unip-SP)

Logaritmo (Unip-SP)

Mensagempor JailsonJr » Sáb Mai 22, 2010 05:16

(Unip-SP) Se os números reais positivos x e y forem tais que

{log}_{10}{2}^{x}+{log}_{10}{3}^{y}=1

{log}_{10}{8}^{x}+{log}_{10}{9}^{y}=2
Então:

Resp.: y={log}_{3}10
-------------------
Minha tentativa:
{log}_{10}{2}^{x}+{log}_{10}{3}^{y}=1

x{log}_{10}{2}^{}+y{log}_{10}{3}^{}=1 \leftarrow

{log}_{10}{8}^{x}+{log}_{10}{9}^{y}=2

{log}_{10}{2}^{3x}+{log}_{10}{3}^{2y}=2

3x{log}_{10}2+2y{log}_{10}3=2 \leftarrow

Fiz um sistema, mas não deu certo ou fiz errado ...
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo (Unip-SP)

Mensagempor JailsonJr » Dom Mai 23, 2010 14:37

Alguém?
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmo (Unip-SP)

Mensagempor Douglasm » Seg Mai 24, 2010 14:12

Como você já fez o sistema, vamos partir dele:

x log_{10}^2 + y log_{10}^3 = 1 \; \therefore \; x = \frac{1 - y log_{10}^3}{log_{10}^2}

Agora substituimos esse valor na outra equação:

3x log_{10}^2 + 2y log_{10}^3 = 2 \; \therefore \; 3(1 - y log_{10}^3) +  2y log_{10}^3 = 2 \; \therefore \; y log_{10}^3 = 1 \; \therefore \;

y = \frac{1}{log_{10}^3} = log_3^{10}

Se substituirmos esse valor em qualquer uma das outras equações, encontraremos x = 0.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)