• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Logarítmica - Polinômio

Equação Logarítmica - Polinômio

Mensagempor Rafael16 » Qua Ago 08, 2012 13:19

Boa tarde :-D

{log}_{2}(x-1) + {log}_{4}(x-3)={log}_{4}(x-1) --> Mudei a base do primeiro logaritmo para 4

2.{log}_{4}(x-1)+{log}_{4}(x-3)={log}_{4}(x-1)

{log}_{4}[(x-1)^2(x-3)]={log}_{4}(x-1) --> Cancelando os log, cheguei no polinômio

x^3-5x^2+6x-2=0

Não estudei polinômios ainda. Gostaria de saber se até onde cheguei esta certo, e também, se tem uma outra forma de resolver isso?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Equação Logarítmica - Polinômio

Mensagempor e8group » Qua Ago 08, 2012 15:17

Boa tarde , você estar certo mas veja que interessante ,




2log_4(x-1) + log_4(x-3) =log_4(x-1)

log_4\left[\frac{(x-1)^2 \cdot(x-3)}{(x-1)}\right] =0  ;  x\neq 1


\implies log_4\left[(x-1)\cdot(x-3)\right] =0



Agora basta você resolver isto ,


(x-1)(x-3) = 1
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação Logarítmica - Polinômio

Mensagempor e8group » Qua Ago 08, 2012 15:43

A maneira a qual você resolveu estar correta também , entretanto há um risco de você comete um erro assumindo x= 1 .


Veja :


log_4((x-1)^2(x-3)) = log_4(x-1)


4^{log_4((x-1)^2(x-3))} = 4^{log_4(x-1)}


\implies (x-1)^2(x-3) - (x-1) = 0

(x-1)\left[(x-1)(x-3) -1 \right]


Agora perceba que ,

x-1 \neq 0 .Logo ,


(x-1)(x-3) -1 = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.