• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cefet-mg 2012 log

cefet-mg 2012 log

Mensagempor Thulio_Parazi » Ter Abr 10, 2012 14:37

Seja a ? R tal que log2(a – 2) > 2. Tomando-se m = log2(a2 – 4),
então, é correto afirmar que m é
não conseguir desempenhar nada dessa questão.
Não sei o que fazer.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor fraol » Ter Abr 10, 2012 21:03

Note que (a^2 - 4) = (a-2).(a+2)
(esse é um produto notável).

Então m = log_{2} (a^2 -4) = log_{2} (a -2)(a+2) = log_{2} (a -2) + log_{2} (a + 2)
(log do produto é a soma dos logs).

Como log_{2} (a -2) > 2, o que você pode concluir a respeito de m ?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor Thulio_Parazi » Ter Abr 10, 2012 23:23

fraol escreveu:Note que (a^2 - 4) = (a-2).(a+2)
(esse é um produto notável).

Então m = log_{2} (a^2 -4) = log_{2} (a -2)(a+2) = log_{2} (a -2) + log_{2} (a + 2)
(log do produto é a soma dos logs).

Como log_{2} (a -2) > 2, o que você pode concluir a respeito de m ?

.

M >5 é isso, mas por que?
Não entendi.
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor fraol » Qua Abr 11, 2012 00:34

Como log_{2} (a -2) > 2, pela definição de logaritmo você tem que:

a - 2 > 2^2 \iff a > 6

Agora vamos analisar log_{2} (a + 4) = x, como a > 6, então a + 4 > 10.

No pior caso digamos que a + 4 = 10, então

log_{2} (a + 4) = x \iff 10 = 2^x, 10 é aproximadamente 2^{3.3},

Assim 2^x \sim 2^{3.3} \iff x \sim 3.3.

A soma que encontramos, o m contém uma parcela maior do que 2 e uma parcela maior do que 3.3. Portanto m > 5.3 > 5.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor Thulio_Parazi » Qua Abr 11, 2012 12:56

fraol escreveu:Como log_{2} (a -2) > 2, pela definição de logaritmo você tem que:

a - 2 > 2^2 \iff a > 6

Agora vamos analisar log_{2} (a + 4) = x, como a > 6, então a + 4 > 10.

No pior caso digamos que a + 4 = 10, então

log_{2} (a + 4) = x \iff 10 = 2^x, 10 é aproximadamente 2^{3.3},

Assim 2^x \sim 2^{3.3} \iff x \sim 3.3.

A soma que encontramos, o m contém uma parcela maior do que 2 e uma parcela maior do que 3.3. Portanto m > 5.3 > 5.

.

Valeu fraol,Kara você é fera, valeu mesmo de coração pela força e pela moral.
Com sua ajuda estou começando a ter mais esperança em passar.. Um abraço
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: cefet-mg 2012 log

Mensagempor Thulio_Parazi » Qui Abr 12, 2012 09:26

Me ajude nessa questão:viewtopic.php?f=111&t=7854
valeu
Thulio_Parazi
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Abr 05, 2012 11:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}