1) Simplificar

Essa eu não tive e idéia nem por onde começar, pensei em tentar mudar de base, mas não deu certo... praticamente não saí do zero. Log dentro de log é uma coisa muito estranha para mim, existe alguma regra prática para esse tipo de situação?
Resposta:

Consegui resolver a primeira, era bobeira, elevei 10 a log a ( já que estava dividindo)
podendo assim simplificar para 
2) Se
e
prove que: 
Como cada uma das definições depende da outra eu fiquei perdido ao tentar unificá-las, sem sucesso também. Como faço para isolar uma incógnita em uma situação dessas?
3) Resolver a equação

Utilizando as propriedades e transformando tudo em log ficou assim:

Resposta: -1 e log 2
Por enquanto são só essas, tentando refazer meus passos acabei conseguindo algumas que não havia conseguido antes.
Obrigado pela atenção


, temos que:




, temos que:
.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.