• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmos sistemas e equações

Logaritmos sistemas e equações

Mensagempor Allanx » Sáb Set 24, 2011 15:30

Olá pessoal estava estudando log e me deparei com exercícios onde fiquei completamente perdido, não vou negar, são muitos. Porém, postarei apenas os primeiros de cada sequência, se não for o bastante para resolver os outros eu volto a postar( o correto seria criar um novo tópico, certo?)

1) Simplificar a^\frac{\log(\log a)}{\log a}
Essa eu não tive e idéia nem por onde começar, pensei em tentar mudar de base, mas não deu certo... praticamente não saí do zero. Log dentro de log é uma coisa muito estranha para mim, existe alguma regra prática para esse tipo de situação?
Resposta: \log a
Consegui resolver a primeira, era bobeira, elevei 10 a log a ( já que estava dividindo)a^{\log_a \log a} podendo assim simplificar para \log a

2) Se x=10^\frac{1}{1-\log z} e y=10^\frac{1}{1-\log x} prove que: z=10^\frac{1}{1-\log y}
Como cada uma das definições depende da outra eu fiquei perdido ao tentar unificá-las, sem sucesso também. Como faço para isolar uma incógnita em uma situação dessas?

3) Resolver a equação x^2+x.\log5 -\log2 = 0
Utilizando as propriedades e transformando tudo em log ficou assim:
\log\frac{10^x^2.5^x}{2} = \log 1 \Rightarrow 10^x^2.5^x = 2
Resposta: -1 e log 2

Por enquanto são só essas, tentando refazer meus passos acabei conseguindo algumas que não havia conseguido antes.
Obrigado pela atenção
Allanx
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mar 25, 2011 23:46
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Logaritmos sistemas e equações

Mensagempor LuizAquino » Sáb Set 24, 2011 17:07

Allanx escreveu:o correto seria criar um novo tópico, certo?

Sim, por questão de organização. Inclusive, o ideal é que em cada tópico haja apenas um exercício.

Allanx escreveu:1) Simplificar a^\frac{\log(\log a)}{\log a}

Note que aplicando mudança de base, podemos dizer que:

\log_a (\log a) = \frac{\log(\log a)}{\log a}

Lembrando-se da propriedade b^{\log_b x} = x , temos que:

a^\frac{\log(\log a)}{\log a} = a^{\log_a (\log a)} = \log a

Allanx escreveu:2) Se x=10^\frac{1}{1-\log z} e y=10^\frac{1}{1-\log x} prove que: z=10^\frac{1}{1-\log y}


Aplicando a definição de logaritmo, podemos escrever que:

x=10^\frac{1}{1-\log z} \Rightarrow \log x = \frac{1}{1 - \log z} \Rightarrow  \log z = 1 - \frac{1}{\log x} \Rightarrow z = 10^{1 - \frac{1}{\log x}}

y=10^\frac{1}{1-\log x} \Rightarrow \log y = \frac{1}{1 - \log x} \Rightarrow  \log x = 1 - \frac{1}{\log y} \Rightarrow x = 10^{1 - \frac{1}{\log y}}

Agora basta substituir x na expressão para z.

Allanx escreveu:3) Resolver a equação x^2+x\log5 -\log2 = 0


Isso é simplesmente uma equação polinomial do 2° grau. Resolva normalmente calculando o discriminante.

\Delta = (\log 5)^2 - 4\cdot 1 \cdot (-\log 2) = (\log 5)^2 + 4\log 2

Lembrando-se que \log 5 =\log \frac{10}{2} = 1 - \log 2, temos que:

\Delta = (1 + \log 2)^2

Agora basta você calcular as duas soluções usando x = \frac{-\log 5 \pm \sqrt{(1 + \log 2)^2}}{2\cdot 1} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?