• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial

Equação exponencial

Mensagempor Regina » Sáb Fev 26, 2011 16:21

Estou a meio de um exercício e surgiu-me outra dúvida.

Cheguei a esta equação e tenho que saber o valor de t, mas como faço?
2{t}^{3}={e}^{0,3t}
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 16:47

Regina escreveu:2{t}^{3}={e}^{0,3t}


Por favor, coloque o texto completo do exercício.

Não há uma forma analítica de resolver essa equação. Ela só pode ser resolvida usando alguma estratégia numérica.

Note que se você efetuar o logaritmo neperiano (ou natural) em ambos os membros, teria algo como:
\ln (2{t}^{3})=\ln({e}^{0,3t})

Aplicando as propriedades de logaritmo, a equação fica:
\ln 2 + 3 \ln t= 0,3t

A partir daqui não há o que fazer analiticamente! Só mesmo usando alguma estratégia numérica!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: logaritmos de novo...

Mensagempor Regina » Sáb Fev 26, 2011 17:15

Então é assim. Eu tenho duas equações que indicam a concentração de um medicamento com o passar do tempo. os medicamentos são administrados a duas pessoas diferentes no mesmo instante, t=0, e o enunciado pergunta quando é que as concentrações dos medicamentos nas duas pessoas voltam a ser iguais.

As duas equações são: Indivúduo A A(t)= {4t}^{3}{e}^{-t} e para o Indivíduo C C(t)= {2t}^{3}{e}^{-0,7t}

Eu igualei as equações {4t}^{3}{e}^{-t}={2t}^{3}{e}^{-0,7t}
e fui tentando simplificar até me dar {2t}^{3}={e}^{0,3t}

Só se a resolução não for para igualar as expressões...
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: logaritmos de novo...

Mensagempor LuizAquino » Sáb Fev 26, 2011 17:24

Regina escreveu:As duas equações são: Indivúduo A A(t)= {4t}^{3}{e}^{-t} e para o Indivíduo C C(t)= {2t}^{3}{e}^{-0,7t}

Eu igualei as equações {4t}^{3}{e}^{-t}={2t}^{3}{e}^{-0,7t}
e fui tentando simplificar até me dar {2t}^{3}={e}^{0,3t}


A sua simplificação está errada! O correto nesse caso seria você dividir toda a equação por 2t^3, ficando com:
2{e}^{-t}={e}^{-0,7t}

Em seguida, você deve efetuar o logaritmo neperiano em ambos os membros:
\ln(2{e}^{-t})=\ln({e}^{-0,7t})

Aplicando as propriedades de logaritmo, teremos:
\ln 2 - t = - 0,7t

Tente continuar a partir daqui.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}