• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade na questão

Dificuldade na questão

Mensagempor igorcalfe » Qua Nov 03, 2010 17:56

Outra questão com logaritmos
Como se resolve essa
3) (PUCRS) Se log(a)=4 e log(b)=1, então log\sqrt[3]{\frac{a^3}{b}}
Resolvi de uma maneira e deu 4 mas a resposta é \frac{11}{3}
igorcalfe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Dom Out 17, 2010 10:39
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldade na questão

Mensagempor MarceloFantini » Qua Nov 03, 2010 18:36

Mostre-nos como você resolveu, talvez possamos encontrar o erro.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dificuldade na questão

Mensagempor igorcalfe » Qua Nov 03, 2010 20:58

Começei resolvendo o primeiro que dá a e o segundo eu coloquei como 1, então diminui e deu 4, ou melhor 3.
mas parace que tem q se resolver a partir de propriedades exponencias não é e depois jogar para o logaritmo.
igorcalfe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Dom Out 17, 2010 10:39
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldade na questão

Mensagempor MarceloFantini » Qua Nov 03, 2010 21:12

Vou fazer mais esse, preste bastante atenção:

\log \sqrt[3]{\frac{a^3}{b}} = \frac{1}{3} \cdot \log \frac{a^3}{b} = \frac{1}{3} \cdot ( \log a^3 - \log b) = \frac{1}{3} \cdot (3 \log a - \log b) = \frac{1}{3} \cdot (3 \cdot 4 - 1) = \frac{11}{3}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dificuldade na questão

Mensagempor igorcalfe » Sex Nov 05, 2010 18:30

Agora entendi
vlw Fantini
igorcalfe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Dom Out 17, 2010 10:39
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}