• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fundamentos da Matemática Elementar -Gelson Iezzi e Murakami

Fundamentos da Matemática Elementar -Gelson Iezzi e Murakami

Mensagempor Abelardo » Sáb Abr 09, 2011 19:33

Estou postando dessas forma, porque não tenho o livro mas copiei as duas perguntas. Achei que copiando as perguntas facilitaria para os que tem o livro ou tem acesso a ele. Vamos lá


Página 105 do volume 1 (8ª edição) questão número 178. ''De uma caixa contendo bolas brancas e pretas, retiraram-se 15 brancas, ficando a relação de 1 branca para 2 pretas. Em seguida, retiraram-se 10 pretas, restando, na caixa, bolas na razão de 4 brancas para 3 pretas. Determine quantas bolas havia, inicialmente, na caixa.''

Página 110 do volume 1 (8ª edição) questão número 192. (Como consegui a imagem na net). ''Qual o menor número inteiro de voltas que deve dar a roda c da engrenagem da figura, para que a roda a dê um número interios de voltas?''


A segunda questão nem faço ideia de como começar, ele não dá nenhuma relação entre as engrenagens, nada mesmo, nem o raio de uma figura.. ai travei na hora kkk.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Fabricio dalla » Sáb Abr 09, 2011 21:38

a primeira questao qual é a resposta ?39?
a segunda questão se faz por MMC
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Abelardo » Sáb Abr 09, 2011 21:50

O número de bolas é 39 mesmo, mas como foi que você fez?

Como aplicar MMC na questão das engrenagens? Quais valores? Admitindo incógnitas?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Fabricio dalla » Sáb Abr 09, 2011 22:35

caixa de bolas=Cb
B=bolas brancas
P=bolas pretas

Cb=B+P
em que, para primeira retirada sendo elas bolas brancas temos B=x-15 e P=y
logo tem-se Cb=x-15+P,Cb=x-15+y

onde:\frac{x-15}{y}=\frac{1}{2}
y=2x-30
em que para segunda retirada sendo elas de bolas pretas temos B=x-15 e P=y-10
Cb=x-15+y-10
onde: \frac{x-15}{y-10}=\frac{4}{3}
3x-45=4y-40
3x-45=4(2x-30)-40
5x=115,x=23
y=2(23)-30
y=16,onde 16+23=39
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Abelardo » Sáb Abr 09, 2011 22:46

Super legal essa resolução. Mas como se faz a das engrenagens?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?