• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fundamentos da Matemática Elementar -Gelson Iezzi e Murakami

Fundamentos da Matemática Elementar -Gelson Iezzi e Murakami

Mensagempor Abelardo » Sáb Abr 09, 2011 19:33

Estou postando dessas forma, porque não tenho o livro mas copiei as duas perguntas. Achei que copiando as perguntas facilitaria para os que tem o livro ou tem acesso a ele. Vamos lá


Página 105 do volume 1 (8ª edição) questão número 178. ''De uma caixa contendo bolas brancas e pretas, retiraram-se 15 brancas, ficando a relação de 1 branca para 2 pretas. Em seguida, retiraram-se 10 pretas, restando, na caixa, bolas na razão de 4 brancas para 3 pretas. Determine quantas bolas havia, inicialmente, na caixa.''

Página 110 do volume 1 (8ª edição) questão número 192. (Como consegui a imagem na net). ''Qual o menor número inteiro de voltas que deve dar a roda c da engrenagem da figura, para que a roda a dê um número interios de voltas?''


A segunda questão nem faço ideia de como começar, ele não dá nenhuma relação entre as engrenagens, nada mesmo, nem o raio de uma figura.. ai travei na hora kkk.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Fabricio dalla » Sáb Abr 09, 2011 21:38

a primeira questao qual é a resposta ?39?
a segunda questão se faz por MMC
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Abelardo » Sáb Abr 09, 2011 21:50

O número de bolas é 39 mesmo, mas como foi que você fez?

Como aplicar MMC na questão das engrenagens? Quais valores? Admitindo incógnitas?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Fabricio dalla » Sáb Abr 09, 2011 22:35

caixa de bolas=Cb
B=bolas brancas
P=bolas pretas

Cb=B+P
em que, para primeira retirada sendo elas bolas brancas temos B=x-15 e P=y
logo tem-se Cb=x-15+P,Cb=x-15+y

onde:\frac{x-15}{y}=\frac{1}{2}
y=2x-30
em que para segunda retirada sendo elas de bolas pretas temos B=x-15 e P=y-10
Cb=x-15+y-10
onde: \frac{x-15}{y-10}=\frac{4}{3}
3x-45=4y-40
3x-45=4(2x-30)-40
5x=115,x=23
y=2(23)-30
y=16,onde 16+23=39
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Fundamentos da Matemática Elementar -Gelson Iezzi e Mura

Mensagempor Abelardo » Sáb Abr 09, 2011 22:46

Super legal essa resolução. Mas como se faz a das engrenagens?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}