• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX)Função

(ESPCEX)Função

Mensagempor natanskt » Ter Out 19, 2010 11:06

na função f(x)=3x-2,sabemos que f(a)=b-2 e f(b)=2b+a. o valor de f[f(a)] é:
a-)a
b-)1
c-)0
d-)-1
e)-2


eu fiz o resultado tinha dado 2b-8,tentei dinovo e deu 3b-2
acho que eu to fazendo tudo errado,me ajuda aew
valeu!
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX)Função

Mensagempor DanielRJ » Ter Out 19, 2010 17:00

natanskt escreveu:na função f(x)=3x-2,sabemos que f(a)=b-2 e f(b)=2b+a. o valor de f[f(a)] é:
a-)a
b-)1
c-)0
d-)-1
e)-2




f(a)=b-2--------------->(a,b-2)

f(b)=2b+a------------->(b,2b+a)

1ºparte:

(a,b-2)
x=a e y=b-2

y=3x-2

b-2=3a-2

3a-b=0

2ºparte:

(b,2b+a)
x=b e y=2b+a

y=3x-2

2b+a=3b-2
a-b=-2

sisteminha:

3a-b=0
a-b=-2(-1)


3a\not{-b}=0
-a\not{+b}=2

2a=2

a=1

f[f(a)]=f[1]=1
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (ESPCEX)Função

Mensagempor natanskt » Qua Out 20, 2010 10:38

nossa mano,
não intendi é dificil essa questão
olha como eu fiz isso ta certo?
f(x)=3x-2
f(a)=b-2
f(b)=2b+a
f(f(a))?
f(a)=b-2 vou colocar o o f(b) no lugar do b
f(a)=2b+a-2 agora vou decobrir f(f(a))
2b+a-2=2b+a-2 corta o a com a,-2 com -2
2b=2b
=1
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
não intendi,vou tentar aprender essa questão
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX)Função

Mensagempor DanielRJ » Qua Out 20, 2010 11:05

natanskt escreveu:nossa mano,
não intendi é dificil essa questão
olha como eu fiz isso ta certo?
f(x)=3x-2
f(a)=b-2
f(b)=2b+a
f(f(a))?
f(a)=b-2 vou colocar o o f(b) no lugar do b
f(a)=2b+a-2 agora vou decobrir f(f(a))
2b+a-2=2b+a-2 corta o a com a,-2 com -2
2b=2b
=1
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
não intendi,vou tentar aprender essa questão


creio q esse metodo seu n está correto,mas eu fiz outra questão sua como essa pegando os pares ordenados a unica diferença foi q ele mexeu com letras.é sua obrigção saber esses tpo de quesão tem um monte por ai :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?