• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Função

Dúvida Função

Mensagempor vb_evan » Sáb Jul 03, 2010 09:18

Tenho este problema de uma frequência, porém não compreendo o que é pedido:

Sabendo que a função f é contínua em |R e:

f'(x)=\frac{2}{4+(x-2)^{2}} , x\geq1

f'(x)=\frac{1}{{x}^{2}}   , x<1

f(1)=\pi

qual será a expressão de f que satisfaz as condições acima?


Já substitui o x por 1, mas nenhuma função me dá o pi....e não vejo outra forma de descobrir a função! (será que tenho de igualar uma expressão por pi?)

Agradecia muito uma ajuda da vossa parte
vb_evan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 06, 2010 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: cursando

Re: Dúvida Função

Mensagempor MarceloFantini » Sáb Jul 03, 2010 15:41

Você tem que integrar as expressões pra x>= 1 e x<1, com a condição de que f(1) = \pi.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida Função

Mensagempor vb_evan » Dom Jul 04, 2010 07:37

É possível exemplificar para uma das funções?
vb_evan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 06, 2010 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: cursando

Re: Dúvida Função

Mensagempor Tom » Ter Jul 06, 2010 00:59

Se f' é definida por duas leis mediante o intervalo do conjunto domínio, então f também o será. Assim:


i)Para x\ge1:

Se f'(x)=\frac{2}{4+(x-2)^{2}}

f=\int\frac{2}{4+(x-2)^{2}}=\int\dfrac{2}{4}\times\dfrac{1}{1+(\frac{x-2}{2})^2}=\frac{1}{2}\int\frac{1}{1+(\frac{x-2}{2})^2}=\frac{1}{2}\int\frac{2[\frac{x-2}{2}]'}{1+(\frac{x-2}{2})^2}=

\int\frac{[\frac{x-2}{2}]'}{1+(\frac{x-2}{2})^2}=arctg(\frac{x-2}{2})+C_1


ii) Para x<1:

Se f'(x)=\frac{1}{{x}^{2}}

f=\int\frac{1}{{x}^{2}}=\frac{-1}{x}+C_2


Além disso f é contínua. Portanto os limites laterais de f quando x\rightarrow1 devem ser iguais. Então:

Pela direita: f(1)=arctg(\frac{1-2}{2})+C_1=\pi\rightarrow C_1=\pi-arctg(\frac{-1}{2})

Pela esquerda: f(1)=\frac{-1}{1}+C_2=\pi\rightarrow C_2=\pi+1



Assim,

f(x)=arctg(\frac{x-2}{2})+\pi-arctg(\frac{-1}{2}) , se x\ge1

f(x)=\frac{-1}{x}+\pi+1, se x<1
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Dúvida Função

Mensagempor vb_evan » Qua Jul 07, 2010 09:35

Obrigado tom ;)
vb_evan
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 06, 2010 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabilidade
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59