• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇÃO QUADRÁTICA] Comparação de raízes

[FUNÇÃO QUADRÁTICA] Comparação de raízes

Mensagempor STARK » Sex Dez 18, 2015 20:39

Determine m para que a equação do 2°grau mx^2 - 2(m-1)x - m - 1 = 0 tenha uma única raíz entre -1 e 2.



GABARITO : m < 3/2 e m ? 0 ou m > 3.



Bom, como ele disse que a equação deve ter apenas uma raíz , a primeira coisa que fiz foi igualar ? à zero, mas para minha infelicidade, o erro já aparece no início, pois temos raízes negativas. Sinceramente, não sei para onde ir. Peço a ajuda de vocês para resolver a questão.Acredito que talvez esta questão possa ter sido resolvida em algum lugar, mas como sou novato eu não soube encontrar, então se puderem pelo menos me dizer o link com a resolução eu agradeço. Obrigado!
STARK
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 18, 2015 20:22
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [FUNÇÃO QUADRÁTICA] Comparação de raízes

Mensagempor Russman » Qua Dez 23, 2015 22:29

Isto. O discriminante deve ser nulo para que se tenha duas raízes reais idênticas, isto é, uma única raiz. Daí,

(-2(m-1))^2 -4.(m).(-m-1)=0 => 4(m-1)^2 + 4m(m+1) = 0 => m^2-2m+1+m^2+m=0=> 2m^2-m+1=0

Nesta equação para m temos que 1^2-4.2.1<0. Logo, não possui raíz real. Assim, não há nenhum m real tal que a equação dada tenha apenas uma única raiz.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59