por STARK » Sex Dez 18, 2015 20:39
Determine m para que a equação do 2°grau mx^2 - 2(m-1)x - m - 1 = 0 tenha uma única raíz entre -1 e 2.
GABARITO : m < 3/2 e m ? 0 ou m > 3.
Bom, como ele disse que a equação deve ter apenas uma raíz , a primeira coisa que fiz foi igualar ? à zero, mas para minha infelicidade, o erro já aparece no início, pois temos raízes negativas. Sinceramente, não sei para onde ir. Peço a ajuda de vocês para resolver a questão.Acredito que talvez esta questão possa ter sido resolvida em algum lugar, mas como sou novato eu não soube encontrar, então se puderem pelo menos me dizer o link com a resolução eu agradeço. Obrigado!
-
STARK
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Dez 18, 2015 20:22
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Qua Dez 23, 2015 22:29
Isto. O discriminante deve ser nulo para que se tenha duas raízes reais idênticas, isto é, uma única raiz. Daí,
(-2(m-1))^2 -4.(m).(-m-1)=0 => 4(m-1)^2 + 4m(m+1) = 0 => m^2-2m+1+m^2+m=0=> 2m^2-m+1=0
Nesta equação para m temos que 1^2-4.2.1<0. Logo, não possui raíz real. Assim, não há nenhum m real tal que a equação dada tenha apenas uma única raiz.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida em exercício - raízes de função quadrática
por Danilo » Qui Jun 07, 2012 01:50
- 1 Respostas
- 3078 Exibições
- Última mensagem por Russman

Qui Jun 07, 2012 03:32
Funções
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 8988 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2516 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
-
- Função Quadratica
por Aline » Qui Jun 18, 2009 14:37
- 1 Respostas
- 1924 Exibições
- Última mensagem por Marcampucio

Qui Jun 18, 2009 16:45
Funções
-
- Função Quadratica
por Aline » Sáb Jun 20, 2009 18:23
- 1 Respostas
- 2009 Exibições
- Última mensagem por Molina

Dom Jun 21, 2009 20:28
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.