• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[cálculo exponencial] auxilio em resolução

[cálculo exponencial] auxilio em resolução

Mensagempor zaspers » Ter Out 08, 2013 07:02

Desculpem-me por questionar algo tão simples, mas tenho dificuldade em compreender estas questões.

Preciso resolver a seguinte equação:
{2}^{x}+{2}^{x+1}+{2}^{x+12}=28
- Na tentativa de igualar as bases fatorei o 28 ficando assim:
{2}^{x}+{2}^{x+1}+{2}^{x+12}={2}^{2}*7

Contudo, não sei como resolver a parte exponencial do lado esquerdo da igualdade. Alguém poderia me dar um norte?
Ciente da atenção de todos, desde já agradeço.
zaspers
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Out 08, 2013 06:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Re: [cálculo exponencial] auxilio em resolução

Mensagempor Russman » Qua Out 09, 2013 04:17

Lembre-se que 2^{x+a} = 2^x.2^a, onde a é um número Real.

Assim, a sua equação pode ser escrita como

2^x + 2^{x+1} + 2^{x+12} = 28
2^x + 2^12^x + 2^122^x = 28

Agora, como 2^x é fator comum de todas as parcelas você pode fatorá-lo de forma que

2^x(1+2^1+2^{12}) = 28
2^x(1+2+4096) = 28
2^x = \frac{28}{4099}
x = \log_2 \frac{28}{4099}

Um olhar mais clínico vê que se a equação fosse mais simples, isto é, não tivesse um expoente tão alto quando x+12 e sim um x+2a solução seria mais elegante. Veja que se a equação fosse

2^x + 2^{x+1} + 2^{x+2} = 28

então

2^x(1+2+4)= 28
2^x . 7 = 2^2.7
2^x = 2^2
x=2

Você digitou a equação corretamente?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [cálculo exponencial] auxilio em resolução

Mensagempor zaspers » Sáb Out 12, 2013 10:26

Sim digitei. Desculpa a demora para responder, época de provas! rs
Eu acabei conseguindo fazer, mas creio que minha nota na prova não foi das melhores. Log acabou comigo.

De qualquer forma, muito obrigado!
zaspers
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Out 08, 2013 06:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59