• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio y=raiz quadrada de x²-4x+3

Domínio y=raiz quadrada de x²-4x+3

Mensagempor virginia » Qui Abr 25, 2013 12:05

Determinar o domínio da função:
y=\sqrt[2]{{x}^{2}-4x+3}
Eu consegui achar como resposta 3 e 1 sendo que não consigo entender porque a resposta do livro é:
(-infinito,1] U [3,+infinito)
Não teria que ser:D: [2,3]
virginia
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Jul 12, 2012 15:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Administração
Andamento: formado

Re: Domínio y=raiz quadrada de x²-4x+3

Mensagempor DanielFerreira » Qui Abr 25, 2013 17:32

Olá Virgínia,
boa tarde!
Nos Reais, uma raiz de índice par não pode ter radicando negativo. Ou seja, ele deve ser maior ou igual a zero, daí,

\\ x^2 - 4x + 3 \geq 0 \\ (x - 3)(x - 1) \geq 0

Já que encontramos as raízes da equação, façamos o estudo dos sinais!

__+_____(1)____-____(3)_____+______

Associando o sinal de + a \geq, temos como resposta:

S = \left \{ x \in \mathbb{R} / x \leq 1 \cup x \geq 3 \right \}

ou

S = \left ( - \infty, 1 \right ] \cup \left [ 3, \infty \right ]


Espero ter ajudado!

Qualquer dúvida, retorne!

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59