• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX)Função

(ESPCEX)Função

Mensagempor natanskt » Ter Out 19, 2010 10:20

4-)(ESPCEX)-seja f uma função real,de variavel real,definida por f(x)=1,se x for racional,f(x)=0,se x for irracional:
assim pode-se afirma que:
a-)f(\sqrt{2})=f(2)
b-)f(\sqrt{3})-f(\sqrt{2})=f(1)
c-)f(3,14)=0
d-)f(r) é irracional (esse r acho que é o pi,nem sei)
e-)\sqrt{f(x)}é racional para x real

essa questão é facil,mais não sei,tirar a raiz do 3,nem do 2,
a e acho que ta errada,,a a tambem
me ajuda ae a intender essa questão,ela está facil,eu estou com umas duvidas "besta"
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX)Função

Mensagempor DanielRJ » Ter Out 19, 2010 17:16

k
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (ESPCEX)Função

Mensagempor MarceloFantini » Ter Out 19, 2010 17:42

Natanskt, essa questão é igual a outra. Você só tem que saber distinguir se o número é racional ou não. Você sabe? Se sabe, diga as definições.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?