• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Módulo

Módulo

Mensagempor Rodrigo Tomaz » Sex Fev 19, 2010 11:36

Olá, bom dia...

Tenho uma dúvida quanto à idéia final duma questão.
Seu enunciado apenas diz: "Se a e b são números reais tais que \sqrt[2]{\frac{a}{b}}+\sqrt[2]{\frac{b}{a}}=\sqrt[2]{13}, quanto vale \left|\sqrt[2]{\frac{a}{b}}-\sqrt[2]{\frac{b}{a}} \right|?"

Então, eu comecei pela primeira expressão jogando a raiz quadrada do valor "13" para o outro lado:

\left(\sqrt[2]{\frac{a}{b}}+\sqrt[2]{\frac{b}{a}} \right)^2=13

Em seguida fui fazendo a resolução comum:

\left( \sqrt[2]{\frac{a}{b}} \right)^2+2*\sqrt[2]{\frac{a}{b}}*\sqrt[2]{\frac{b}{a}}+\left( \sqrt[2]{\frac{b}{a}} \right)^2=13 \Rightarrow \frac{a}{b}+2+\frac{b}{a}=13 \Rightarrow \frac{a}{b}+\frac{b}{a}=13-2=11

Logo... \frac{a}{b}+\frac{b}{a}=11

Daí então não consegui complementar a idéia.
Caro professor:

Será que o Senhor pode me ajudar a terminá-la? Ou ainda me dizer se esta idéia não tem fundamento pra achar a resposta em questão?

Agradeço sua atenção e espero resposta.
Rodrigo Tomaz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 19, 2010 10:49
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico mecânica
Andamento: cursando

Re: Módulo

Mensagempor guijermous » Qui Mar 04, 2010 15:48

Boa, tb não consegui resolver. Alguem poderia ajudar?
guijermous
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Fev 15, 2010 14:38
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Inf. Industrial
Andamento: formado

Re: Módulo

Mensagempor MarceloFantini » Qui Mar 04, 2010 22:38

Boa noite.

Não tenho certeza da resolução, mas aqui está como eu tentei.

\sqrt {\frac{a}{b}} + \sqrt {\frac{b}{a}} = \sqrt {13}

Multiplicando a primeira fração por \sqrt {a} em cima e embaixo, e fazendo o mesmo processo na segunda só que multiplicando por \sqrt {b}, temos:

\frac{a}{\sqrt {ab}} + \frac{b}{\sqrt {ab}} = \sqrt {13}

\frac {a+b}{\sqrt {ab}} = \sqrt {13}

Multiplicando por \sqrt {ab} dos dois lados:

a+b = \sqrt {13ab}

Elevando ao quadrado:

(a+b)^2 = (\sqrt {13ab})^2

a^2 + 2ab + b^2 = 13ab

Somando-se -4ab dos dois lados:

a^2 -2ab +b^2 = 9ab

(a-b)^2 = 9ab

Extraindo a raiz quadrada:

a-b = 3 \sqrt {ab}

Dividindo-se os dois lados por \sqrt {ab}:

\frac{a-b}{\sqrt {ab}} = 3

\frac{a}{\sqrt {ab}} - \frac{b}{\sqrt {ab}} = 3

Multiplicando a primeira fração por \sqrt {a} em cima e embaixo, e multiplicando a segunda por \sqrt {b} do mesmo modo:

\sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} = 3

Portanto:

\left| \sqrt {\frac{a}{b}} - \sqrt {\frac{b}{a}} \right| = 3

Acredito que seja isso.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Módulo

Mensagempor Rodrigo Tomaz » Qui Mar 04, 2010 23:16

Boa noite Fantini,
muito obrigado sua resposta está certíssima!
tentei fazer mas achei que a resolução era isolada! mas pelo seu raciocínio vejo que não é tão complicado...
que Deus te abençoe fica na paz vlw!
Rodrigo Tomaz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 19, 2010 10:49
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico mecânica
Andamento: cursando

Re: Módulo

Mensagempor MarceloFantini » Sex Mar 05, 2010 16:09

Boa tarde.

Fico feliz em ter ajudado, mas percebi que a minha resolução é extremamente grande e, pior de tudo, desnecessária. Aqui vai uma solução mais rápida:

x = \sqrt {\frac{a}{b}}

x + \frac{1}{x} = \sqrt {13}

(x + \frac{1}{x})^2 = (\sqrt {13})^2

x^2 +2 + \frac{1}{x^2} = 13

Somando-se (-4):

x^2 -2 + \frac{1}{x^2} = 9

(x - \frac{1}{x})^2 = 3^2

\sqrt {(x - \frac{1}{x})^2} = \sqrt {3^2}

\left| x - \frac{1}{x} \right| = 3

Espero ter ajudado (mais rapidamente).

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?