• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função cubica

Função cubica

Mensagempor herobr23 » Seg Fev 23, 2015 19:10

Gostaria de saber como proceder nesse caso:
1. São dadas algumas equações de diversas funções. Construa seus gráficos.
f(x)x³+2x²+5x+8
Eu não consegui fazer essa equação e nem sei o que fazer, já tentei chutar e o valor mais aproximado deu 1,75 no chute, tentei pesquisar, contudo o material é muito escasso na internet.
Gostaria da ajuda de vocês em relação a como fazer esse gráfico.

Eu vi outro material que dizia que bastava atribui valor ao x, todavia, estou desconfiado e acho não esta certo.
Ficarei grato se vocês puderem me colocar no caminho certo para resolver a equação acima, ate mesmo com outros exemplos.
herobr23
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Fev 23, 2015 19:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria
Andamento: cursando

Re: Função cubica

Mensagempor Baltuilhe » Qua Fev 25, 2015 13:38

sBoa tarde!

Para a construção do gráfico de funções podemos nos utilizar dos conceitos de limite e derivadas de forma a poder obter o desejado.
    1. Obter os limites \lim_{x \to -\infty} f(x) e \lim_{x \to +\infty} f(x);
    2. Obter os pontos críticos calculando a derivada primeira e analisando;
    3. Obter os pontos de inflexão e análise da concavidade pela derivada segunda;

1)
Vamos começar pelos limites:
\lim_{x \to -\infty} x^3+2x^2+5x+8 = \lim_{x \to -\infty} x^3\left(1+\frac{2}{x}+\frac{5}{x^2}+\frac{8}{x^3}\right)=-\infty
\lim_{x \to +\infty} x^3+2x^2+5x+8 = \lim_{x \to +\infty} x^3\left(1+\frac{2}{x}+\frac{5}{x^2}+\frac{8}{x^3}\right)=+\infty

Ou seja, a função vai para menos infinito quando os valores de x vão para menos infinito e vai para mais infinito quando os valores de x vão para mais infinito.

2)
Derivando (para obter os pontos críticos, fazemos a derivada igual a zero);
f(x)=x^3+2x^2+5x+8
f'(x)=3x^2+4x+5

Resolvendo a equação do segundo grau:
3x^2+4x+5=0
\Delta=(4)^2-4(3)(5)=16-60=-44

Como o valor de delta é negativo esta equação NÃO possui raízes racionais. Portanto, não há valores críticos.
Analisando o sinal da derivada primeira, portanto, como só retornará valores POSITIVOS, indicando que a função f(x) é sempre CRESCENTE.

3) Derivada segunda:
f'(x)=3x^2+4x+5
f''(x)=6x+4

Igualando a zero:
6x+4=0
6x=-4
x=\frac{-4}{6}=-\frac{2}{3}

Analisando o sinal da derivada segunda, como muda de negativo para positivo ao passar pelo -2/3, este ponto é um ponto de INFLEXÃO (ponto de mudança de concavidade).

Vou deixar o link do wolframalpha já com o gráfico desenhado.
Neste link => http://www.wolframalpha.com/input/?i=x% ... 2%2B5x%2B8

Veja que a função é crescente, e que no -2/3 ela muda de concavidade para baixo (antes do -2/3 a derivada segunda é negativa) para concavidade para cima.

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}