• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função exponencial e logaritmica] Problema

[Função exponencial e logaritmica] Problema

Mensagempor fff » Sáb Jan 04, 2014 12:02

Tenho dúvidas neste exercício:
Imagem
A 4.1a Q(t)={Q}_{o}{e}^{ln\frac{ln0.5}{25}t} e a 4.1bQ(n)={Q}_{o}{e}^{ln(0.5n)}.
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [Função exponencial e logaritmica] Problema

Mensagempor anderson_wallace » Seg Jan 06, 2014 12:11

Note que Q(25)=\frac{{Q}_{0}}{2} e por outro lado, temos que Q(25)={Q}_{0}{e}^{-25k}, de modo que ficamos com:

Q(25)=Q(25)\Rightarrow\frac{{Q}_{0}}{2}={Q}_{0}{e}^{-25k}\Rightarrow{e}^{-25k}=\frac{1}{2}\Rightarrow ln({e}^{-25k})=ln(\frac{1}{2})\Rightarrow(-25k)lne=ln(\frac{1}{2})\Rightarrow-k=\frac{ln(\frac{1}{2})}{25}, logo a equação modelagem em função de t fica, Q(t)={Q}_{0}{e}^{(\frac{ln(\frac{1}{2})}{25})t}

Agora para a letra b, precisamos fazer uma troca de variável. Observe que t=25n, desse modo temos,

Q(t)=Q(25n)={Q}_{0}{e}^{(\frac{ln(\frac{1}{2})}{25})25n}={Q}_{0}{e}^{ln(\frac{1}{2})n}, agora temos uma função na variável n, logo Q(n)={Q}_{0}{e}^{ln(\frac{1}{2})n}, mas note que

{Q}_{0}{e}^{ln(\frac{1}{2})n}\neq{Q}_{0}{e}^{ln(\frac{1}{2}n)}, logo minha resposta da b está diferente do seu gabarito o que realmente me deixou inseguro se cometi algum erro (que não consegui encontrar), mas seja como for, acho que a ideia para resolver a questão é essa mesmo.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Função exponencial e logaritmica] Problema

Mensagempor fff » Seg Jan 06, 2014 12:19

Muito obrigada :)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59