por terraqueando » Qui Mar 28, 2013 00:27
Ei galera, to precisando muito da ajuda de vocês. Eu tenho esse trabalho pra entregar daqui exatamente uma semana no qual tá valendo 1/5 da nota. Não consigo nem começar o mesmo, gostaria muito da ajuda de vocês pra pelo menos começá-lo e algumas dicas para a resolução. Seria somente substituir o t por valores numéricos?
Esboce o gráfico da função

, com

. Esta função é uma função do tipo impulso

, onde

são constantes. Este tipo de função serve, por exemplo, para aproximar o que ocorre com a concentração y da droga paracetamol no sangue no tempo t(t horas).
-
terraqueando
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 28, 2013 00:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Farmácia
- Andamento: cursando
por timoteo » Qui Mar 28, 2013 17:34
Olá.
Essa função é uma exponencial, então, dê uma olhada em gráfico dessa função em livros ou na net.
Você pode também, fazer como função logarítmica, caso você sinta-se melhor com a álgebra desta.
É isso ai!
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
por terraqueando » Qua Abr 03, 2013 21:30
timoteo escreveu:Olá.
Essa função é uma exponencial, então, dê uma olhada em gráfico dessa função em livros ou na net.
Você pode também, fazer como função logarítmica, caso você sinta-se melhor com a álgebra desta.
É isso ai!
Meu professor disse que precisa fazer o esboço com derivada primeira, pra achar os pontos críticos e derivada segunda pra achar os pontos de inflexão, só que não to conseguindo :(
-
terraqueando
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 28, 2013 00:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Farmácia
- Andamento: cursando
por Russman » Qua Abr 03, 2013 21:48
É recorrente a análise das derivadas de uma função para esboçar o gráfico da mesma. Em 1° lugar vamos analisar os pontos em que a função se anula e intersepta o eixo vertical.


Portanto o ponto

pertence a função é exatamente onde ela se anula e intersepta o eixo vertical. Agora vamos analisar se ela possui um ponto extremo. Este é tal que a 1° derivada da função se anula. Assim


.
Portanto, temos um ponto de máximo em

pois no limite em que

calculamos que a função vai para

. Se calculamos o limite quando

vai para

temos que a função tente também a

.
Assim, a função vem de

, passa pela origem, cresce até

e começa a decrescer atingindo assintoticamente o

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Concentração (Proporção)
por plugpc » Sáb Out 24, 2009 15:46
- 2 Respostas
- 2227 Exibições
- Última mensagem por plugpc

Seg Out 26, 2009 20:02
Álgebra Elementar
-
- Ajuda com exercicio!!!
por tuany » Seg Mar 24, 2008 15:34
- 3 Respostas
- 3989 Exibições
- Última mensagem por tuany

Ter Mar 25, 2008 16:50
Funções
-
- Ajuda com exercicio!!!
por karol_agnelli » Qua Mar 26, 2008 19:40
- 6 Respostas
- 7057 Exibições
- Última mensagem por Cleyson007

Qua Jun 10, 2009 15:23
Tópicos sem Interação (leia as regras)
-
- ajuda com o exercicio
por Mimizinha » Seg Mar 31, 2008 18:19
- 2 Respostas
- 3389 Exibições
- Última mensagem por Mimizinha

Ter Abr 01, 2008 10:24
Geometria Plana
-
- Ajuda em Exercício.
por Levi23 » Dom Set 28, 2008 02:01
- 12 Respostas
- 8539 Exibições
- Última mensagem por admin

Sáb Out 04, 2008 13:51
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.