• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determine o valor da expressão de duas funções

Determine o valor da expressão de duas funções

Mensagempor Debylow » Sex Nov 30, 2012 18:32

Considere duas funções g e h , definidas por:


g\left(x \right)= \frac{1}{2}\left({6}^{x}-{6}^{-x} \right)


h\left(x \right)= \frac{1}{2}\left({6}^{x}+{6}^{-x} \right)


determine o valor da expressão \left[h\left(x \right) \right]{}^{2} - \left[g\left(x \right) \right]{}^{2}


Obg quem puder responder
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Determine o valor da expressão de duas funções

Mensagempor DanielFerreira » Sex Nov 30, 2012 21:29

\\ \left [ h(x) \right ]^2 - \left [ g(x) \right ]^2 = \\\\ \left [ h(x) + g(x) \right ]\left [ h(x) - g(x) \right ] = \\\\\\ \left [ \frac{6^x + 6^{- x}}{2} + \frac{6^x - 6^{- x}}{2} \right ]\left [ \frac{6^x + 6^{- x}}{2} - \frac{6^x - 6^{- x}}{2} \right ] = \\\\\\ \left [ \frac{6^x + \cancel{6^{- x}} + 6^x \cancel{- 6^{- x}}}{2} \right ]\left [ \frac{\cancel{6^x} + 6^{- x} \cancel{- 6^x} + 6^{- x}}{2} \right ] = \\\\\\ \left ( \frac{2 \cdot 6^x}{2} \right ) \left ( \frac{2 \cdot 6^{- x}}{2}  \right ) = \\\\\\ 6^x \cdot 6^{- x} = \\\\ 6^{x - x} = \\\\ 6^0 = \\\\ \boxed{1}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Determine o valor da expressão de duas funções

Mensagempor Debylow » Ter Dez 04, 2012 11:21

me explica pq dividiu por 2 e transformou em uma multiplicação ? nao entendi
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Determine o valor da expressão de duas funções

Mensagempor Russman » Ter Dez 04, 2012 20:00

Existe uma identidade que diz

a^2 - b^2 = (a+b)(a-b).

Ou seja, a diferença dos quadrados de dois números é igual ao produto da soma pela diferença desses números.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Determine o valor da expressão de duas funções

Mensagempor Debylow » Ter Dez 04, 2012 20:41

hmm entendi , obg
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)