• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa, me ajudem!

Função inversa, me ajudem!

Mensagempor paulohenrique_ » Seg Out 22, 2012 16:32

Um metro é, aproximadamente, 6,214 x 10-4 milhas. Ache uma fórmula y = f(x) que expresse o comprimento x em metros como uma função de mesmo comprimento f(x) em milhas. Encontre, se existir a formula para uma função inversa de f.

Grato pela atenção!
paulohenrique_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 16:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia
Andamento: cursando

Re: Função inversa, me ajudem!

Mensagempor paulohenrique_ » Ter Out 23, 2012 14:29

Alguem poderia me ajudar? pois estou necessitando muito desse trabalho que tenho que fazer, e não estou conseguindo fazer essa questão.
paulohenrique_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 16:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia
Andamento: cursando

Re: Função inversa, me ajudem!

Mensagempor young_jedi » Ter Out 23, 2012 14:37

dividindo a quantidade de metros multiplicado por 6,214.10^{-4}

f(x)=6,214.10^{-4}.x

tente fazer agora a segunda parte do problema
repare que nessa segunda parte f(x) agora representa em metros e x em milhas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}